(3.237.97.64) 您好!臺灣時間:2021/03/04 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林育珍
研究生(外文):Yu-Chen Lin
論文名稱:以Tol2跳躍基因系統剖析斑馬魚six1,six6 及人類 DMP1之組織專一性促進子之功能,並以此系統在斑馬魚基因體進行高輸出量「基因捕獵」之研究
論文名稱(外文):Functional analyses of the tissue-specific enhancer elements of the zebrafish six1,six6 and human DMP1 and in vivo high throughput gene-trapping by Tol2 transposon system
指導教授:張百恩
指導教授(外文):Bei-En Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:口腔生物科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:74
中文關鍵詞:Tol2元素劑量基因捕獵IRES-GFP多連體DNA
外文關鍵詞:Tol2 elementdosagegene trapIRES-GFPDNA concatemers
相關次數:
  • 被引用被引用:1
  • 點閱點閱:712
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Tol2元素是從日本青鱂魚(medaka fish)的基因組中分離出來。Tol2元素是屬於hAT轉位子家族成員之一,hAT家族包括,果蠅中的hobo、玉米中的Ac及金魚藻中的Tam3。轉位子被用來在研究果蠅基因體或是其它模式動物中,是非常具有效力的工具。但是,這樣的工具卻尚未在斑馬魚上建立。由於斑馬魚基因組上,沒有具有活性的DNA轉位子。Kawakami實驗室在2000年,成功的將Tol2轉位子系統運用斑馬魚上。Kawakami等人,建立了高效率的轉殖方法,包括含有Tol2轉位子載體的質體DNA和體外(in vitro)合成的轉位酶酵素mRNA以顯微注射的方式一注射到一個細胞期的斑馬魚受精卵中。結果發現有約50%的F0(Founder)會將其生殖線遺傳給下一代。此外利用Tol2轉位子系統,也可用來建立新基因的捕獵(gene trap)及插入性的突變(insertional mutagenesis)方法,在斑馬魚或其他模式動物上。
鑒於,Tol2轉位子高效率的轉殖系統,我將Six1、Six6.1、Six6.2及DMPE2 DNA片段含有Tol2轉位子載體的質體與轉位酶酵素mRNA,以顯微注射的方式送到斑馬魚胚胎中。利用DNA與mRNA之間不同的劑量(dosages),來測試Tol2轉位子的最佳效果。首先,我將DNA與mRNA的濃度等比往上加,分別配了濃度為1X(DNA 25ng/µl;mRNA 25ng/µl)、2X(DNA 50ng/µl;mRNA 50ng/µl)及4X (DNA 100ng/µl;mRNA 100ng/µl)三種劑量,結果發現隨著的濃度上升,的確可以使斑馬魚體節的綠色螢光變強(以Six1基因來測試濃度)。但是高劑量的濃度4X會導致胚胎的死亡率提高及產生畸形。於是,我將濃度固定在2X,mRNA的濃度則等比例的往上加,分別配了2X0R(DNA 50ng/µl;mRNA 0ng/µl)、2X2R (DNA 50ng/µl;mRNA 50ng/µl)及2X4R(DNA 50ng/µl;mRNA 100ng/µl)三種劑量,結果發現濃度為2X2R 及2X4R的轉殖斑馬魚綠色螢光可以達到4X濃度的亮度,而且死亡率也降低了。
此外,我也利用Tol2轉位子系統在斑馬魚建立了基因捕獵(gene trap)方法,如果Tol2跳躍子能夠剛好插入一段基因中間,會使得此基因無法表現,造成外表性狀的差異,便可利用此含GFP mutant找出基因。我所建立的基因捕獵(Troy)當中含有兩個鏡像的exons 且內含IRES-GFP,當Tol2轉位酶酵素辨認到含有Tol2左右兩端的序列的質體後進行切割(excised),嵌入基因組中,不論方向性都可以使基因進行轉錄及轉譯成蛋白質。此外,IRES-GFP並非fusion蛋白,可以使ribosome與kozak sequence結合時,不會有in frame reading的問題。這兩個特性可使基因捕獵的效率(6倍)高於Kawakami實驗室所建立的基因捕獵。
由以上的實驗結果發現,要達到Kawakami實驗室建立的Tol2系統,找到 DNA與mRNA濃度之間的平衡點是很重要的。另一個不同點是,Tol2轉位子嵌入基因組類是以single copy的方式,非Tol2系統則是以多連體DNA(concatemers)的方式;這可能是導致Tol2系統斑馬魚綠色螢光表現強度較弱與非Tol2系統所建立的螢光不太一樣的原因(以Six6.1基因為例子)。


The Tol2 element was isolated from the genome of the Japanese medaka fish. The Tol2 transposable element belongs to the hAT family of transposons including hobo of Drosophila, Ac of maize, and Tam3 of snapdragon. Transposons have been used as powerful tools for genetic studies in Drosophila and other model organisms. Such a tool had, however, not been developed in zebrafish. This is because no active DNA-transposable element has been found from the zebrafish genome. In 2000, Kawakami has used Tol2 transposn system successfully in zebrafish. They established a highly efficient transgenesis method in which a plasmid DNA containing the Tol2 transposon vector and the transposase mRNA synthesized in vitro were coinjected into one-cell stage embryos. It was estimated that about 51% founder fish would transmit foreign DNA via their germline cell to the next generation. The Tol2 transposon system should thus be used to develop novel transgenesis and insertional mutagenesis methods in zebrafish and possibly in other animal models.
In view of the high efficiency of Tol2 trangennesis, I cloned Six1, Six6.1, Six6.2 and DMPE2 DNA sequences in Tol2-containing vector and coinjected with transposase RNA into zebrafish embryos. I used different dosages of DNA and mRNA to evaluate the best efficiency of Tol2 transposn system. At first, I added DNA and mRNA increasely on the same ratio containing 1X (DNA 25ng/µl;mRNA 25ng/µl), 2X (DNA 50ng/µl;mRNA 50ng/µl) and 4X (DNA 100ng/µl;mRNA 100ng/µl), three different dosages. And with this increasing dosages, I found that high dosages could lead to strong GFP expression in the zebrafish somite (Six1gene is tested). But high dosages could also lead to high ratio of embryonic lethality and abnormality. Therefore, I fixed DNA dosages with increasing mRNA dosages containing 2X0R (DNA 50ng/µl;mRNA 0ng/µl), 2X2R (DNA 50ng/µl;mRNA 50ng/µl) and 2X4R (DNA 50ng/µl;mRNA 100ng/µl), three different dosages. I found that transgenic zebrafish with the doses of 2X2R and 2X4R express GFP at levels comparable to 4X transgenic zebrafish and the death rate was also decreased.
Furthermore, I also develop a gene trap method in zebrafish using the Tol2 transposon system. If the Tol2 transposon is inserted into the genome, the insertion could interfere with expression of the trapped gene leading to phenotypes difference. We can use the mutant containing GFP to find the trapped gene. I develop the gene trap method, Troy, which contains two mirror-image exons harboring IRES-GFP. When Tol2 transpoase identifies Tol2 construct containing Tol2 left-right end sequences, the Tol2 construct is excised from the donor plasmid and integrated into the genome. It is no matter what the direction of insertion is, the inserted trapped gene could transcrible into protein. In addition, IRES-GFP is not a fusion protein. There is no problem of frame-reading shift, when ribosomes bind to kozak sequence. The efficiency of our gene trap with these two features is six times higher the gene trap developed by Kawakami’s laboratory.
The results of the experiments suggest that, it’s impotent to find the balance of dosages between DNA and mRNA to achieve the Tol2 transposon system established by Kawakami’s laboratory. Another difference is that Tol2 transposon inserted into genome is by single copy, whereas non-Tol2 transposon transgenes are inserted by DNA concatemers. These could lead to different intensities of GFP expression between Tol2 transgenic zebrafish and non-Tol2 transgenic zebrafish (example of Six6.1 gene).


口試委員審定書……………………………………………………i
誌謝……………………………………………………………………ii
中文摘要……………………………………………………………iii
英文摘要…………………………………………………………v
壹、前言………………………………………………………………1
貳、實驗材料…………………………………………………………22
參、實驗方法…………………………………………………………29
肆、結果………………………………………………………………46
伍、討論………………………………………………………………50
陸、圖表………………………………………………………………53
參考文獻………………………………………………………………72



Biemont, C., and Vieira, C. (2006). Genetics: junk DNA as an evolutionary force. Nature 443, 521-524.
Driever, W., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Malicki, J., Stemple, D.L., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., et al. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37-46.
Durick, K., Mendlein, J., and Xanthopoulos, K.G. (1999). Hunting with traps: genome-wide strategies for gene discovery and functional analysis. Genome Res 9, 1019-1025.
Feng, J.Q., Ward, L.M., Liu, S., Lu, Y., Xie, Y., Yuan, B., Yu, X., Rauch, F., Davis, S.I., Zhang, S., et al. (2006). Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38, 1310-1315.
George, A., Ramachandran, A., Albazzaz, M., and Ravindran, S. (2007). DMP1--a key regulator in mineralized matrix formation. J Musculoskelet Neuronal Interact 7, 308.
Huang, B., Maciejewska, I., Sun, Y., Peng, T., Qin, D., Lu, Y., Bonewald, L., Butler, W.T., Feng, J., and Qin, C. (2008). Identification of full-length dentin matrix protein 1 in dentin and bone. Calcif Tissue Int 82, 401-410.
Ivics, Z., Hackett, P.B., Plasterk, R.H., and Izsvak, Z. (1997). Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501-510.
Izsvak, Z., Ivics, Z., Garcia-Estefania, D., Fahrenkrug, S.C., and Hackett, P.B. (1996). DANA elements: a family of composite, tRNA-derived short interspersed DNA elements associated with mutational activities in zebrafish (Danio rerio). Proc Natl Acad Sci U S A 93, 1077-1081.
Izsvak, Z., Ivics, Z., and Hackett, P.B. (1995). Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Mol Gen Genet 247, 312-322.
Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn 234, 244-254.
Kawakami, K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8 Suppl 1, S7.
Kawakami, K., Sato, S., Ozaki, H., and Ikeda, K. (2000a). Six family genes--structure and function as transcription factors and their roles in development. Bioessays 22, 616-626.
Kawakami, K., Shima, A., and Kawakami, N. (2000b). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403-11408.
Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133-144.
Kelsh, R.N., Inoue, C., Momoi, A., Kondoh, H., Furutani-Seiki, M., Ozato, K., and Wakamatsu, Y. (2004). The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development. Mech Dev 121, 841-859.
Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., and Hori, H. (1996). Transposable element in fish. Nature 383, 30.
Kotani, T., Nagayoshi, S., Urasaki, A., and Kawakami, K. (2006). Transposon-mediated gene trapping in zebrafish. Methods 39, 199-206.
Kumar, J.P. (2009). The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci 66, 565-583.
Lam, W.L., Lee, T.S., and Gilbert, W. (1996). Active transposition in zebrafish. Proc Natl Acad Sci U S A 93, 10870-10875.
Ogbureke, K.U., Nikitakis, N.G., Warburton, G., Ord, R.A., Sauk, J.J., Waller, J.L., and Fisher, L.W. (2007). Up-regulation of SIBLING proteins and correlation with cognate MMP expression in oral cancer. Oral Oncol 43, 920-932.
Parinov, S., Kondrichin, I., Korzh, V., and Emelyanov, A. (2004). Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231, 449-459.
Qin, C., Brunn, J.C., Cook, R.G., Orkiszewski, R.S., Malone, J.P., Veis, A., and Butler, W.T. (2003). Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem 278, 34700-34708.
Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981). Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296.
Tomita H. (1975). Mutant genes in the medaka. In: Yamamoto T, editor. Medaka (Killifish), biology and strains. Tokyo: Yugakusha. p 251–272.
Urasaki, A., Morvan, G., and Kawakami, K. (2006). Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639-649.
呂智凱, 藉由綠色螢光蛋白報導基因研究斑馬魚Six1.1 基因啟動子之顱顏組織專一性表現. 國立臺灣大學醫學院口腔生物科學研究所口腔細胞生物學組碩士論文, 2008.
蔡旻男, 斑馬魚Six6基因之選殖、表現及啟動子之顱顏組織專一性調控之研究. 國立臺灣大學醫學院口腔生物科學研究所口腔細胞生物學組碩士論文, 2008.
陳文裕, 以基因轉殖方法藉由報導基因 EGFP 辨識人類 DMP1 基因在牙齒專一表現之加強子. 國立臺灣大學醫學院口腔生物科學研究所口腔細胞生物學組碩士論文, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. ◎林森田,1995,「土地交易所得稅課徵問題之探討」,『人與地』,第135期。
2. ◎余桂霖,1997,「論功利主義」,『復興崗學報』,第60期。
3. ◎何包鋼,2001,「沃爾澤的多元正義理論評析」,『二十一世紀』,第66期。
4. ◎胡春雷,2006,「我國憲法土地政策規範之探討」,『經濟研究』,第6期。
5. ◎林英彥,1992,「土地增值稅按實際交易價格課徵問題探討」,『人與地』,第97期。
6. ◎汪瑞芝,2006,「土地增值稅減半徵收對公司實質交易之影響」,『會計與公司治理』,第3期第1卷。
7. ◎呂世昌,1999,「政治正義理論與三民主義學說」,『中山學報』,10月號。
8. ◎李禮仲、黃怡靜,2001,「調整土地增值稅之思維」,『中國稅務旬刊』,第1791期。
9. ◎李翰林,2001,「沃爾澤的分配公正理論」,『社會理論學報』,第4卷第2期。
10. ◎李承嘉,1995,「從地租理論的發展論土地增值稅之課徵」,『法商學報』,第31期。
11. ◎殷章甫,1993,「漲價歸公與土地增值稅」,『土地經濟年刊』,第4期。
12. ◎張杏端,2002,「土地增值稅減半對房地產市場之影響」,『現代地政』,第247、248期。
13. ◎張典魁,2009,「陳立夫《唯生論》與柏格森哲學關係之探討」,『中正歷史學刊』,第12期。
14. ◎黃俊杰,1997,「土地增值稅與土地增值稅之憲法基礎」,『植根雜誌』,第13卷第8期。
15. ◎曾國祥,2003,「論沈岱爾之行動性理論:一個哲學保守主義的重塑」,『政治與社會哲學評論』,第6期。
 
1. 電生理活性與斑馬魚鈉離子通道1.6亞型在斑馬魚神經及肌肉發育上扮演的角色研究
2. 第一部分:斑馬魚VHL基因在腎臟發育時的生物活性;第二部分:斑馬魚ATP2A家族在發育時的基因表現
3. 以Tol2系統發展抗菌螢光斑馬魚之研究
4. 斑馬魚低氧誘發蛋白hifα轉錄因子對於斑馬魚vsx1基因上游啟動子之基因調控作用
5. 第一部分:利用斑馬魚評估對乙醯基氨氛造成之腎毒性第二部分:Capsulin在斑馬魚胚胎原腎發育中扮演的角色
6. 1.熱休克蛋白70在發育中斑馬魚自發性表現與轉譯調節機制2.斑馬魚胚胎萃取液中DNA傷害切割活性之偵測
7. 斑馬魚低氧誘發蛋白HIFα對於斑馬魚眼睛發育中rho與vsx1基因上游啟動子之基因調控
8. 第一部份斑馬魚熱休克因子HSF2之分子選殖,表現及其活性分析,第二部份有機重金屬三丁基錫對斑馬魚胚胎之核酸配對錯誤修補辨識蛋白MSH2及MSH6mRNA表現之影響
9. 斑馬魚酪胺酸磷酸水解酶 (ptp4a1 & ptp4a2) 在胚胎早期的功能分析
10. 利用基因轉殖表現方法分析SonicHedgehog與Netrin訊息傳遞在斑馬魚顱顏部色素細胞移動所扮演之功能
11. 利用免疫組織染色和原位雜交反應探討TGFβ3和Shh在轉殖斑馬魚眼睛發育過程所扮演的角色
12. Ran在斑馬魚視網膜發育的功能
13. 研究同步表現NEDD4-a與K-ras-G12D促使斑馬魚肝腫瘤生成
14. 二氧化鈦奈米顆粒對發育中斑馬魚之行為研究
15. 斑馬魚Prx4重組蛋白質的生化特性分析及其在胚胎發育期間和氧化壓力誘導下基因表現之探討
 
系統版面圖檔 系統版面圖檔