(34.201.11.222) 您好!臺灣時間:2021/02/25 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳俊學
研究生(外文):Chun-Hsieh Wu
論文名稱:利用斑馬魚活體實驗來探討雙磷酸鹽造成顎骨壞死之可能機制
論文名稱(外文):A new insight into the mechanism of bisphosphonate-related osteonecrosis of the jaw using zebrafish as a model
指導教授:王若松王若松引用關係
指導教授(外文):Juo-Song Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:116
中文關鍵詞:骨壞死雙磷酸鹽斑馬魚骨生成
外文關鍵詞:bisphosphonateosteonecrosiszebrafishbone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
雙磷酸鹽(bisphosphonate)是骨骼中與羥基磷灰石相結合的焦磷酸鹽(pyrophosphate)之人工合成類似物。體內自然生成之焦磷酸鹽可在血清與尿液中被發現,但因其結構式不穩定,無法經由口服服用,因此開發出結構穩定的雙磷酸鹽。此類藥物主要被認為可抑制蝕骨細胞功能,因此具有抑制骨骼再吸收之作用。目前,此類藥物已相當廣泛地用於治療骨質疏鬆以及骨溶性骨轉移之癌症病人,由此突顯出其重要性。

然而,最近的臨床報告發現此類藥物對骨骼及傷口修復可能具有副作用。有關雙磷酸鹽可能造成顎骨壞死 (bisphosphonate-related osteonecrosis of the jaw, BRONJ)在2003年出現最早被發表的臨床病例。由於陸續有一些相關的發現報告,此臨床現象已開始引起注意並且令一些執行牙科手術之牙醫師以及治療癌症之醫師感到相當困惑。目前,造成BRONJ之詳細機制尚待釐清,由於其影響層面很廣,包含牙科拔牙、植牙、牙周手術,以及癌症病人骨轉移之治療皆與之相關,因此BRONJ之研究實為迫切而重要之議題。

至今並未有使用斑馬魚來研究BRONJ之相關文獻,本實驗選用斑馬魚,主要因為其為脊椎動物硬骨魚類 (Danio rerio, osteichthye 硬骨魚綱),其尾鰭再生方式與人類膜內骨再生模式相似,而且其硬骨可以利用alizarin red染色或以calcein進行活體染色,故本實驗計劃以斑馬魚建立起一個全新有效的活體動物模式,來探討雙磷酸鹽對骨骼生成、恆定及代謝(turnover)作用之影響,以期獲得活體(in vivo)的研究證據來解析BRONJ發生之機制。

本實驗先從形態學著手,魚苗部分首先利用alcian blue軟骨染色來觀察alendronate是否對魚苗軟骨發育過程有影響。之後再利用calcein硬骨染色來觀察此藥物對魚苗早期顏面及脊椎骨骼礦化過程(day 5~day 14)是否有影響。成魚部分首先利用alizarin red染色和calcein活體染色來觀察此藥物對成魚尾鰭切除後再生之型態是否有影響。之後再以acridine orange染色來觀察此藥物在成魚尾鰭再生時是否會造成細胞死亡。最後以原位雜合反應(in situ hybridization)分析尾鰭再生時浸泡藥物是否會造成不同時期之骨母細胞(osteoblast)基因表現出現異常。

實驗結果顯示,alendronate對魚苗軟骨及硬骨早期發育再生無顯著影響。成魚尾鰭再生部分發現骨質生成具有劑量效應;低劑量具有促進骨質生成作用,反之,較高劑量反而抑制骨質生成。另外,我發現alendronate在尾鰭再生之骨質鰭條週圍具有一些細胞毒性,可造成細胞死亡(apoptosis)。原位雜合反應則發現低劑量藥物可促進骨母細胞早期基因Runx2表現,而高劑量藥物則抑制此基因表現。由以上結果我們可以獲得一個可能造成BRONJ之初步結論:因此藥物為bone hook,對硬骨有很高的親和力,故會隨著時間逐漸鍵結在硬骨上,當有傷口形成時(如尾鰭切除),造成局部骨頭代謝速率(turnover rate)急遽上升,局部釋放出大量藥物,造成周圍細胞死亡並影響傷口癒合過程,推測此可能為造成BRONJ之主因。

關鍵詞:骨壞死、雙磷酸鹽、斑馬魚、骨生成

Bisphosphonates, analogues of endogenous pyrophosphate which binds to hydroxyapatite in bone, are synthetic drugs for treating osteoporosis. Endogenous pyrophosphate found in serum and urine is unstable and easily metabolized. In contrast, bisphosphonates have been developed as drugs due to their stability and affinity to bone, conferring the inhibition of bone-resorption probably mediated by impeding osteoclast function. To date, they have been broadly employed in medication for the patients with osteoporosis and metastatic osteolytic cancers, which betrays their impact on clinical therapies.

However, recent clinical reports have implicated these drugs in adverse effects on bone and wound healing. The first report about “bisphosphonate-related osteonecrosis of the jaw”(BRONJ) was published in 2003. Consecutively, many correlated cases have been identified. These contentious clinical phenomena begin to overwhelm and baffle the dentists as well as other medical doctors who have encountered the patients using bisphosphonates. The underlying detailed mechanism of BRONJ still remains elusive. The prevalent application of these drugs and its implication in dental surgeries and cancer therapies suggest this is an important compelling issue for medical research.

To date, there is no related research of BRONJ using zebrafish as a model. The teleost zebrafish (Danio rerio, osteichthye), a vertebrate animal model, has been extensively applied in bio-medical research, including osteogenesis. The regeneration of zebrafish caudal fin is similar to the regeneration of human intramembranous bone. The bone and cartilage of the fish can be easily visualized by staining, facilitating the observation of their morphologies. In this study, I utilize zebrafish to analyze the effects of bisphosphonate on bone re-growth for quantitative and qualitative analyses, dissect the etiology of BRONJ and unravel the underlying molecular mechanism by in vivo evidences.

At first I analyzed the morphologies of zebrafish embryos after treatment with alendronate. I observed the development of larvae cartilage by alcian blue staining and early facial and spinal bone mineralization(day 5~day 14) by calcein staining. In adult zebrafish, I observed the morphology of fin regeneration after amputation by alizarin red and calcein (in vivo) staining. Analysis of cell apoptosis was done by acridine orange and I perform in situ hybridization to detect early and late gene markers of osteoblast and osteoclast to unveil the gene expression patterns.

My results show that alendronate has no effect on larva cartilage development and early bone mineralization. But it has a dose-dependent effect on bone mineralization of adult fin regeneration. Low dose augments this process, while higher dose impedes it. Futhermore, it seems that this drug exerts cytotoxicity on the cells encompassing bone matrix, resulting in cell apoptosis. I found by in situ hybridization that low dose of alendronate augments the expression of Runx2, an early gene marker of osteoblast and higher dose suppress its expression. In conclusion: The results suggest the main cause of BRONJ is that alendronate is a bone hook and cumulatively bound in bone. When wound formation, the local bone turnover rate increases rapidly and releases large quantity of alendronate, which causes the death of cells surrounding fin rays and impedes the wound healing.

Keywords: bisphosphonate, osteonecrosis, zebrafish, bone

目 錄
口試委員審定書...........................................i
誌謝....................................................ii
中文摘要................................................iv
英文摘要................................................vi
壹、前言.................................................1
貳、實驗材料............................................31
參、實驗方法............................................40
肆、結果................................................52
伍、討論................................................58
陸、圖表................................................71
參考文獻................................................96


AAOMS. (2007). American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg 65, 369-76.

Adami, S., Bhalla, A. K., Dorizzi, R., Montesanti, F., Rosini, S., Salvagno, G. and Lo Cascio, V. (1987). The acute-phase response after bisphosphonate administration. Calcif Tissue Int 41, 326-31.

Alonci, A., Allegra, A., Bellomo, G., Quartarone, E., Oteri, G., Nastro, E., Cicciu, D., De Ponte, F. S. and Musolino, C. (2007). Patients with bisphosphonate-associated osteonecrosis of the jaw have unmodified levels of soluble vascular endothelial growth factor receptor 1. Leuk Lymphoma 48, 1852-4.

Anderson, D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D. and Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-9.

Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., Miyata, T., Anderson, D. M. and Suda, T. (1999). Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 190, 1741-54.

Badros, A., Weikel, D., Salama, A., Goloubeva, O., Schneider, A., Rapoport, A., Fenton, R., Gahres, N., Sausville, E., Ord, R. et al. (2006). Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J Clin Oncol 24, 945-52.

Battaglino, R., Kim, D., Fu, J., Vaage, B., Fu, X. Y. and Stashenko, P. (2002). c-myc is required for osteoclast differentiation. J Bone Miner Res 17, 763-73.

Berenson, J. R., Hillner, B. E., Kyle, R. A., Anderson, K., Lipton, A., Yee, G. C. and Biermann, J. S. (2002). American Society of Clinical Oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol 20, 3719-36.

Berenson, J. R., Lichtenstein, A., Porter, L., Dimopoulos, M. A., Bordoni, R., George, S., Lipton, A., Keller, A., Ballester, O., Kovacs, M. et al. (1998). Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 16, 593-602.

Berenson, J. R., Lichtenstein, A., Porter, L., Dimopoulos, M. A., Bordoni, R., George, S., Lipton, A., Keller, A., Ballester, O., Kovacs, M. J. et al. (1996). Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 334, 488-93.

Bergstrom, J. D., Bostedor, R. G., Masarachia, P. J., Reszka, A. A. and Rodan, G. (2000). Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 373, 231-41.

Bertoldo, F., Santini, D. and Lo Cascio, V. (2007). Bisphosphonates and osteomyelitis of the jaw: a pathogenic puzzle. Nat Clin Pract Oncol 4, 711-21.

Boonen, S., Vanderschueren, D., Venken, K., Milisen, K., Delforge, M. and Haentjens, P. (2008). Recent developments in the management of postmenopausal osteoporosis with bisphosphonates: enhanced efficacy by enhanced compliance. J Intern Med 264, 315-32.

Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature 423, 337-42.

Burgess, T. L., Qian, Y., Kaufman, S., Ring, B. D., Van, G., Capparelli, C., Kelley, M., Hsu, H., Boyle, W. J., Dunstan, C. R. et al. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 145, 527-38.

Chagraoui, H., Tulliez, M., Smayra, T., Komura, E., Giraudier, S., Yun, T., Lassau, N., Vainchenker, W. and Wendling, F. (2003). Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101, 2983-9.

Clezardin, P., Ebetino, F. H. and Fournier, P. G. (2005). Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res 65, 4971-4.

Coleman, R. (2007). On the horizon: can bisphosphonates prevent bone metastases? Breast 16 Suppl 3, S21-7.

Conte, P. and Coleman, R. (2004). Bisphosphonates in the treatment of skeletal metastases. Semin Oncol 31, 59-63.

Coxon, F. P., Helfrich, M. H., Van''t Hof, R., Sebti, S., Ralston, S. H., Hamilton, A. and Rogers, M. J. (2000). Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res 15, 1467-76.

Coxon, F. P., Thompson, K. and Rogers, M. J. (2006). Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol 6, 307-12.

Coxon, J. P., Oades, G. M., Kirby, R. S. and Colston, K. W. (2004). Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int 94, 164-70.

Darnay, B. G., Haridas, V., Ni, J., Moore, P. A. and Aggarwal, B. B. (1998). Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 273, 20551-5.

Dodson, T. B., Raje, N. S., Caruso, P. A. and Rosenberg, A. E. (2008). Case records of the Massachusetts General Hospital. Case 9-2008. A 65-year-old woman with a nonhealing ulcer of the jaw. N Engl J Med 358, 1283-91.

D''Silva, N. J., Summerlin, D. J., Cordell, K. G., Abdelsayed, R. A., Tomich, C. E., Hanks, C. T., Fear, D. and Meyrowitz, S. (2006). Metastatic tumors in the jaws: a retrospective study of 114 cases. J Am Dent Assoc 137, 1667-72.

Du, S. J., Frenkel, V., Kindschi, G. and Zohar, Y. (2001). Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238, 239-46.

Dunford, J. E., Rogers, M. J., Ebetino, F. H., Phipps, R. J. and Coxon, F. P. (2006). Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases. J Bone Miner Res 21, 684-94.

Dunford, J. E., Thompson, K., Coxon, F. P., Luckman, S. P., Hahn, F. M., Poulter, C. D., Ebetino, F. H. and Rogers, M. J. (2001). Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296, 235-42.

Durie, B. G., Katz, M. and Crowley, J. (2005). Osteonecrosis of the jaw and bisphosphonates. N Engl J Med 353, 99-102; discussion 99-102.

FDA. (2005). United States Food and Drug Administration Oncologic Drugs Advisory Committee. Combidex briefing information.

Fisher, J. E., Rogers, M. J., Halasy, J. M., Luckman, S. P., Hughes, D. E., Masarachia, P. J., Wesolowski, G., Russell, R. G., Rodan, G. A. and Reszka, A. A. (1999). Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci U S A 96, 133-8.

Fleisch, H. (1998). Bisphosphonates: mechanisms of action. Endocr Rev 19, 80-100.

Fleisch, H., Russell, R. G. and Francis, M. D. (1969). Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 165, 1262-4.

Fleisch, H., Russell, R. G. and Straumann, F. (1966). Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212, 901-3.

Francis, M. D., Russell, R. G. and Fleisch, H. (1969). Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165, 1264-6.

Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E. W., Brown, K. D., Leonardi, A., Tran, T., Boyce, B. F. and Siebenlist, U. (1997). Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11, 3482-96.

Frith, J. C., Monkkonen, J., Auriola, S., Monkkonen, H. and Rogers, M. J. (2001). The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum 44, 2201-10.

Frith, J. C., Monkkonen, J., Blackburn, G. M., Russell, R. G. and Rogers, M. J. (1997). Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5''-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12, 1358-67.

Gaal, J., Bender, T., Varga, J., Horvath, I., Kiss, J., Somogyi, P. and Suranyi, P. (2009). Overcoming resistance to bisphosphonates through the administration of alfacalcidol: results of a 1-year, open follow-up study. Rheumatol Int.

Galibert, L., Tometsko, M. E., Anderson, D. M., Cosman, D. and Dougall, W. C. (1998). The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 273, 34120-7.

Gao, L., Deng, H., Zhao, H., Hirbe, A., Harding, J., Ratner, L. and Weilbaecher, K. (2005). HTLV-1 Tax transgenic mice develop spontaneous osteolytic bone metastases prevented by osteoclast inhibition. Blood 106, 4294-302.

Garetto, L. P., Chen, J., Parr, J. A. and Roberts, W. E. (1995). Remodeling dynamics of bone supporting rigidly fixed titanium implants: a histomorphometric comparison in four species including humans. Implant Dent 4, 235-43.

Giraudo, E., Inoue, M. and Hanahan, D. (2004). An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114, 623-33.

Gober, H. J., Kistowska, M., Angman, L., Jeno, P., Mori, L. and De Libero, G. (2003). Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197, 163-8.

Goldstein, J. L. and Brown, M. S. (1990). Regulation of the mevalonate pathway. Nature 343, 425-30.

Green, J. R. (2004). Bisphosphonates: preclinical review. Oncologist 9 Suppl 4, 3-13.

Grigoriadis, A. E., Wang, Z. Q., Cecchini, M. G., Hofstetter, W., Felix, R., Fleisch, H. A. and Wagner, E. F. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-8.

Halasy-Nagy, J. M., Rodan, G. A. and Reszka, A. A. (2001). Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone 29, 553-9.

Hansen, T., Kunkel, M., Springer, E., Walter, C., Weber, A., Siegel, E. and Kirkpatrick, C. J. (2007). Actinomycosis of the jaws--histopathological study of 45 patients shows significant involvement in bisphosphonate-associated osteonecrosis and infected osteoradionecrosis. Virchows Arch 451, 1009-17.

Hashimoto, K., Morishige, K., Sawada, K., Tahara, M., Kawagishi, R., Ikebuchi, Y., Sakata, M., Tasaka, K. and Murata, Y. (2005). Alendronate inhibits intraperitoneal dissemination in in vivo ovarian cancer model. Cancer Res 65, 540-5.

Hayday, A. C. (2000). [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18, 975-1026.

Hewitt, R. E., Lissina, A., Green, A. E., Slay, E. S., Price, D. A. and Sewell, A. K. (2005). The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139, 101-11.

Hillner, B. E., Ingle, J. N., Berenson, J. R., Janjan, N. A., Albain, K. S., Lipton, A., Yee, G., Biermann, J. S., Chlebowski, R. T. and Pfister, D. G. (2000). American Society of Clinical Oncology guideline on the role of bisphosphonates in breast cancer. American Society of Clinical Oncology Bisphosphonates Expert Panel. J Clin Oncol 18, 1378-91.

Hiraga, T., Williams, P. J., Ueda, A., Tamura, D. and Yoneda, T. (2004). Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res 10, 4559-67.

Hofbauer, L. C., Khosla, S., Dunstan, C. R., Lacey, D. L., Boyle, W. J. and Riggs, B. L. (2000). The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15, 2-12.

Hoff, A. O., Toth, B. B., Altundag, K. (2006). Osteonecrosis of the jaw in patients receiving intravenous bisphosphonate therapy. Journal of Clinical Oncology 24, 8528.

Hortobagyi, G. N., Theriault, R. L., Lipton, A., Porter, L., Blayney, D., Sinoff, C., Wheeler, H., Simeone, J. F., Seaman, J. J., Knight, R. D. et al. (1998). Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16, 2038-44.

Hortobagyi, G. N., Theriault, R. L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., Wheeler, H., Simeone, J. F., Seaman, J. and Knight, R. D. (1996). Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 335, 1785-91.

Hotokezaka, H., Sakai, E., Kanaoka, K., Saito, K., Matsuo, K., Kitaura, H., Yoshida, N. and Nakayama, K. (2002). U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277, 47366-72.

Hsu, H., Lacey, D. L., Dunstan, C. R., Solovyev, I., Colombero, A., Timms, E., Tan, H. L., Elliott, G., Kelley, M. J., Sarosi, I. et al. (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 96, 3540-5.

Huja, S. S., Fernandez, S. A., Hill, K. J. and Li, Y. (2006). Remodeling dynamics in the alveolar process in skeletally mature dogs. Anat Rec A Discov Mol Cell Evol Biol 288, 1243-9.

Iden, S. and Collard, J. G. (2008). Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9, 846-59.

Idris, A. I., Rojas, J., Greig, I. R., Van''t Hof, R. J. and Ralston, S. H. (2008). Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82, 191-201.

Im, G. I., Qureshi, S. A., Kenney, J., Rubash, H. E. and Shanbhag, A. S. (2004). Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25, 4105-15.

Jimi, E., Akiyama, S., Tsurukai, T., Okahashi, N., Kobayashi, K., Udagawa, N., Nishihara, T., Takahashi, N. and Suda, T. (1999). Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol 163, 434-42.

Kajiwara, S., Fraser, P. D., Kondo, K. and Misawa, N. (1997). Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324 ( Pt 2), 421-6.

Kavanagh, K. L., Guo, K., Dunford, J. E., Wu, X., Knapp, S., Ebetino, F. H., Rogers, M. J., Russell, R. G. and Oppermann, U. (2006). The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci U S A 103, 7829-34.

Keller, E. E. and Gunderson, L. L. (1987). Bone disease metastatic to the jaws. J Am Dent Assoc 115, 697-701.

Khosla, S., Burr, D., Cauley, J., Dempster, D. W., Ebeling, P. R., Felsenberg, D., Gagel, R. F., Gilsanz, V., Guise, T., Koka, S. et al. (2007). Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22, 1479-91.

Kobayashi, N., Kadono, Y., Naito, A., Matsumoto, K., Yamamoto, T., Tanaka, S. and Inoue, J. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20, 1271-80.

Kong, Y. Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J., Elliott, R., McCabe, S. et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304-9.

Kunzmann, V., Bauer, E., Feurle, J., Weissinger, F., Tony, H. P. and Wilhelm, M. (2000). Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96, 384-92.

Kunzmann, V., Bauer, E. and Wilhelm, M. (1999). Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340, 737-8.

Lacey, D. L., Tan, H. L., Lu, J., Kaufman, S., Van, G., Qiu, W., Rattan, A., Scully, S., Fletcher, F., Juan, T. et al. (2000). Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157, 435-48.

Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S. et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-76.

Lambertenghi-Deliliers, G., Bruno, E., Cortelezzi, A., Fumagalli, L. and Morosini, A. (1988). Incidence of jaw lesions in 193 patients with multiple myeloma. Oral Surg Oral Med Oral Pathol 65, 533-7.

Landesberg, R., Cozin, M., Cremers, S., Woo, V., Kousteni, S., Sinha, S., Garrett-Sinha, L. and Raghavan, S. (2008). Inhibition of oral mucosal cell wound healing by bisphosphonates. J Oral Maxillofac Surg 66, 839-47.

Lane, K. T. and Beese, L. S. (2006). Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47, 681-99.

Lehenkari, P. P., Kellinsalmi, M., Napankangas, J. P., Ylitalo, K. V., Monkkonen, J., Rogers, M. J., Azhayev, A., Vaananen, H. K. and Hassinen, I. E. (2002). Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61, 1255-62.

Li, J., Sarosi, I., Yan, X. Q., Morony, S., Capparelli, C., Tan, H. L., McCabe, S., Elliott, R., Scully, S., Van, G. et al. (2000). RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97, 1566-71.

Li, X., Udagawa, N., Itoh, K., Suda, K., Murase, Y., Nishihara, T., Suda, T. and Takahashi, N. (2002). p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143, 3105-13.

Li, Y. P., Chen, W., Liang, Y., Li, E. and Stashenko, P. (1999). Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23, 447-51.

Lomaga, M. A., Yeh, W. C., Sarosi, I., Duncan, G. S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S. et al. (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13, 1015-24.

Luckman, S. P., Hughes, D. E., Coxon, F. P., Graham, R., Russell, G. and Rogers, M. J. (1998). Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13, 581-9.

Mak, T. W. and Yeh, W. C. (2002). Immunology: a block at the toll gate. Nature 418, 835-6.

Manolagas, S. C. (2000). Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21, 115-37.

Mansky, K. C., Sankar, U., Han, J. and Ostrowski, M. C. (2002). Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 277, 11077-83.

Marx, R. E., Sawatari, Y., Fortin, M. and Broumand, V. (2005). Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63, 1567-75.

Matsumoto, M., Sudo, T., Saito, T., Osada, H. and Tsujimoto, M. (2000). Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275, 31155-61.

Matsumoto, S., Kimura, S., Segawa, H., Kuroda, J., Yuasa, T., Sato, K., Nogawa, M., Tanaka, F., Maekawa, T. and Wada, H. (2005). Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines. Lung Cancer 47, 31-9.

Mavrokokki, T., Cheng, A., Stein, B. and Goss, A. (2007). Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg 65, 415-23.

McDonald, M. M., Schindeler, A., Little D.G. (2007). Bisphosphonate treatment and fracture repair. IBMS BoneKEy 4, 236-251.

McLean, W. and Olsen, B. R. (2001). Mouse models of abnormal skeletal development and homeostasis. Trends Genet 17, S38-43.

McTaggart, S. J. (2006). Isoprenylated proteins. Cell Mol Life Sci 63, 255-67.

Michaelson, M. D. and Smith, M. R. (2005). Bisphosphonates for treatment and prevention of bone metastases. J Clin Oncol 23, 8219-24.

Monkkonen, H., Auriola, S., Lehenkari, P., Kellinsalmi, M., Hassinen, I. E., Vepsalainen, J. and Monkkonen, J. (2006). A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol 147, 437-45.

Monkkonen, H., Rogers, M. J., Makkonen, N., Niva, S., Auriola, S. and Monkkonen, J. (2001). The cellular uptake and metabolism of clodronate in RAW 264 macrophages. Pharm Res 18, 1550-5.

Murciano, C., Perez-Claros, J., Smith, A., Avaron, F., Fernandez, T. D., Duran, I., Ruiz-Sanchez, J., Garcia, F., Becerra, J., Akimenko, M. A. et al. (2007). Position dependence of hemiray morphogenesis during tail fin regeneration in Danio rerio. Dev Biol 312, 272-83.

Naidu, A., Dechow, P. C., Spears, R., Wright, J. M., Kessler, H. P. and Opperman, L. A. (2008). The effects of bisphosphonates on osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106, 5-13.

Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Yano, K., Morinaga, T. and Higashio, K. (1998). RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 253, 395-400.

Novince, C. M., Ward, B. B. and McCauley, L. K. (2009). Osteonecrosis of the jaw: an update and review of recommendations. Cells Tissues Organs 189, 275-83.

Orriss, I. R., Key, M. L., Colston, K. W. and Arnett, T. R. (2009). Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106, 109-18.

Ory, B., Heymann, M. F., Kamijo, A., Gouin, F., Heymann, D. and Redini, F. (2005). Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice. Cancer 104, 2522-9.

Poleo, G., Brown, C. W., Laforest, L. and Akimenko, M. A. (2001). Cell proliferation and movement during early fin regeneration in zebrafish. Dev Dyn 221, 380-90.

Polizzotto, M. N., Cousins, V. and Schwarer, A. P. (2006). Bisphosphonate-associated osteonecrosis of the auditory canal. Br J Haematol 132, 114.

Reinholz, G. G., Getz, B., Pederson, L., Sanders, E. S., Subramaniam, M., Ingle, J. N. and Spelsberg, T. C. (2000). Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60, 6001-7.

Reszka, A. A., Halasy-Nagy, J. M., Masarachia, P. J. and Rodan, G. A. (1999). Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem 274, 34967-73.

Roelofs, A. J., Thompson, K., Gordon, S. and Rogers, M. J. (2006). Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12, 6222s-6230s.

Rogers, M. J. (2003). New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9, 2643-58.

Rogers, M. J., Frith, J. C., Luckman, S. P., Coxon, F. P., Benford, H. L., Monkkonen, J., Auriola, S., Chilton, K. M. and Russell, R. G. (1999). Molecular mechanisms of action of bisphosphonates. Bone 24, 73S-79S.

Rondeau, J. M., Bitsch, F., Bourgier, E., Geiser, M., Hemmig, R., Kroemer, M., Lehmann, S., Ramage, P., Rieffel, S., Strauss, A. et al. (2006). Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. ChemMedChem 1, 267-73.

Roodman, G. D. (2004). Mechanisms of bone metastasis. N Engl J Med 350, 1655-64.

Rubegni, P. and Fimiani, M. (2006). Images in clinical medicine. Bisphosphonate-associated contact stomatitis. N Engl J Med 355, e25.

Ruggiero, S. L. and Mehrotra, B. (2009). Bisphosphonate-related osteonecrosis of the jaw: diagnosis, prevention, and management. Annu Rev Med 60, 85-96.

Ruggiero, S. L., Mehrotra, B., Rosenberg, T. J. and Engroff, S. L. (2004). Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62, 527-34.

Russell, R. G., Croucher, P. I. and Rogers, M. J. (1999). Bisphosphonates: pharmacology, mechanisms of action and clinical uses. Osteoporos Int 9 Suppl 2, S66-80.

Santini, D., Vincenzi, B., Dicuonzo, G., Avvisati, G., Massacesi, C., Battistoni, F., Gavasci, M., Rocci, L., Tirindelli, M. C., Altomare, V. et al. (2003). Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res 9, 2893-7.

Santini, D., Vincenzi, B., Hannon, R. A., Brown, J. E., Dicuonzo, G., Angeletti, S., La Cesa, A., Coleman, R. E., Tonini, G., Budillon, A. et al. (2006). Changes in bone resorption and vascular endothelial growth factor after a single zoledronic acid infusion in cancer patients with bone metastases from solid tumours. Oncol Rep 15, 1351-7.

Sawada, K., Morishige, K., Tahara, M., Kawagishi, R., Ikebuchi, Y., Tasaka, K. and Murata, Y. (2002). Alendronate inhibits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of rho. Cancer Res 62, 6015-20.

Schoppet, M., Preissner, K. T. and Hofbauer, L. C. (2002). RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol 22, 549-53.

Shipman, C. M., Croucher, P. I., Russell, R. G., Helfrich, M. H. and Rogers, M. J. (1998). The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Res 58, 5294-7.

Shui, C., Riggs, B. L. and Khosla, S. (2002). The immunosuppressant rapamycin, alone or with transforming growth factor-beta, enhances osteoclast differentiation of RAW264.7 monocyte-macrophage cells in the presence of RANK-ligand. Calcif Tissue Int 71, 437-46.

Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Luthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T. et al. (1997). Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309-19.

Smith, A., Avaron, F., Guay, D., Padhi, B. K. and Akimenko, M. A. (2006). Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function. Dev Biol 299, 438-54.

Söllner, C., Burghammer, M., Busch-Nentwich, E., Berger, J., Schwarz, H., Riekel, C. and Nicolson, T. (2003). Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302, 282-6.

Solomon, C. G. (2002). Bisphosphonates and osteoporosis. N Engl J Med 346, 642.

Staal, A., Frith, J. C., French, M. H., Swartz, J., Gungor, T., Harrity, T. W., Tamasi, J., Rogers, M. J. and Feyen, J. H. (2003). The ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG-CoA reductase activity. J Bone Miner Res 18, 88-96.

Takahashi, N., Yamana, H., Yoshiki, S., Roodman, G. D., Mundy, G. R., Jones, S. J., Boyde, A. and Suda, T. (1988). Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122, 1373-82.

Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J. et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901.

Takeshita, S., Namba, N., Zhao, J. J., Jiang, Y., Genant, H. K., Silva, M. J., Brodt, M. D., Helgason, C. D., Kalesnikoff, J., Rauh, M. J. et al. (2002). SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8, 943-9.

Theill, L. E., Boyle, W. J. and Penninger, J. M. (2002). RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20, 795-823.

Theriault, R. L., Lipton, A., Hortobagyi, G. N., Leff, R., Gluck, S., Stewart, J. F., Costello, S., Kennedy, I., Simeone, J., Seaman, J. J. et al. (1999). Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 17, 846-54.

Thompson, K. and Rogers, M. J. (2004). Statins prevent bisphosphonate-induced gamma,delta-T-cell proliferation and activation in vitro. J Bone Miner Res 19, 278-88.

Thompson, K., Rogers, M. J., Coxon, F. P. and Crockett, J. C. (2006). Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharmacol 69, 1624-32.

Thompson, K., Rogers, M. J., Coxon, F. P. and Crockett, J. C. (2006). Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharmacol 69, 1624-32.

Treister, N. and Woo, S. B. (2006). Images in clinical medicine. Bisphosphonate-associated osteonecrosis of the jaw. N Engl J Med 355, 2348.

Udagawa, N., Takahashi, N., Yasuda, H., Mizuno, A., Itoh, K., Ueno, Y., Shinki, T., Gillespie, M. T., Martin, T. J., Higashio, K. et al. (2000). Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141, 3478-84.

van beek, E., Lowik, C., van der Pluijm, G. and Papapoulos, S. (1999). The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: A clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res 14, 722-9.

Van den Wyngaert, T., Claeys, T., Huizing, M. T., Vermorken, J. B. and Fossion, E. (2009). Initial experience with conservative treatment in cancer patients with osteonecrosis of the jaw (ONJ) and predictors of outcome. Ann Oncol 20, 331-6.

van Holten-Verzantvoort, A. T., Kroon, H. M., Bijvoet, O. L., Cleton, F. J., Beex, L. V., Blijham, G., Hermans, J., Neijt, J. P., Papapoulos, S. E., Sleeboom, H. P. et al. (1993). Palliative pamidronate treatment in patients with bone metastases from breast cancer. J Clin Oncol 11, 491-8.

Van Wesenbeeck, L., Odgren, P. R., MacKay, C. A., D''Angelo, M., Safadi, F. F., Popoff, S. N., Van Hul, W. and Marks, S. C., Jr. (2002). The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: Evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci U S A 99, 14303-8.

Virtanen, S. S., Vaananen, H. K., Harkonen, P. L. and Lakkakorpi, P. T. (2002). Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62, 2708-14.

Wagner, E. F. and Karsenty, G. (2001). Genetic control of skeletal development. Curr Opin Genet Dev 11, 527-32.

Wakchoure, S., Merrell, M. A., Aldrich, W., Millender-Swain, T., Harris, K. W., Triozzi, P. and Selander, K. S. (2006). Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo. Clin Cancer Res 12, 2862-8.

Wang, H. L., Weber, D. and McCauley, L. K. (2007). Effect of long-term oral bisphosphonates on implant wound healing: literature review and a case report. J Periodontol 78, 584-94.

Wei, S., Wang, M. W., Teitelbaum, S. L. and Ross, F. P. (2002). Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. J Biol Chem 277, 6622-30.

Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H. and Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 4, 1041-9.

Xing, L., Bushnell, T. P., Carlson, L., Tai, Z., Tondravi, M., Siebenlist, U., Young, F. and Boyce, B. F. (2002). NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J Bone Miner Res 17, 1200-10.

Yamagishi, S., Abe, R., Inagaki, Y., Nakamura, K., Sugawara, H., Inokuma, D., Nakamura, H., Shimizu, T., Takeuchi, M., Yoshimura, A. et al. (2004). Minodronate, a newly developed nitrogen-containing bisphosphonate, suppresses melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling. Am J Pathol 165, 1865-74.

Yamamoto, A., Miyazaki, T., Kadono, Y., Takayanagi, H., Miura, T., Nishina, H., Katada, T., Wakabayashi, K., Oda, H., Nakamura, K. et al. (2002). Possible involvement of IkappaB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kappaB ligand. J Bone Miner Res 17, 612-21.

Yarom, N., Yahalom, R., Shoshani, Y., Hamed, W., Regev, E. and Elad, S. (2007). Osteonecrosis of the jaw induced by orally administered bisphosphonates: incidence, clinical features, predisposing factors and treatment outcome. Osteoporos Int 18, 1363-70.

Yasuda, H., Shima, N., Nakagawa, N., Mochizuki, S. I., Yano, K., Fujise, N., Sato, Y., Goto, M., Yamaguchi, K., Kuriyama, M. et al. (1998). Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139, 1329-37.

Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A. et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95, 3597-602.

陳文裕, 以基因轉殖方法藉由報導基因EGFP辨識人類DMP1基因在牙齒專一表現之加強子, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔