|
1. T. Ishira, K. Komatani, Y. Mixuhara, and Y. Takita, J. Am. Ceram. Soc., 75, 13 (1992). 2. J. Zhang, D. Chi, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martin, and P. Hess, Jpn. J. Appl. Phys.,362, 76 (1997). 3. S. Ezhilvalavan, Tseung-Yuen Tseng, Materials Chemistry and Physics, 65, p. 227 (2000). 4. D. E. Kotecki et al., IBM J. RES. DEVELOP., 43, p.367 (1999). 5. J. F. et al., Ferroelectrics, Vol. 116, p. 147 (1991). 6. R. G. Hunsperger, “Integrated Optics: Theory and Technology” (1992). 7. Bahaa E. A. Saleh and Malvin Carl Teich, “Fundamentals of Photonics” (1991). 8. C. K. Cambell,“Surface Acoustic Wave Devices for Mobile and Wireless Communications”(1998). 9. Michael Thompson and David C. Stone, “Surface-Launched Acoustic Wave Sensors”(1997). 10. M. Yamamuka, T. Kawahara, T. Makita, A. Yuuki, and K. Ono, Jpn. J. Appl. Phys., Part 1 35, p.729 (1996). 11. C. S. Hwang, S. P. Park, H. J. Cho, C. S. Kang, S. I. Lee, and M. Y. Lee, Appl. Phys. Lett., 67, p.2819 (1995). 12. J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman, and A. R. Krauss, Appl. Phys. Lett., 76, p.625 (2000). 13. G. Yang, H. Gu, J. Zhu, and Y. WANG, J. Cryst. Growth, 242, p.172 (2002). 14. R. Liedtke, M. Grossmann, and R. Waser, Appl. Phys. Lett., 77, p. 2045 (2000). 15. F. Yan, P. Bao, Z. Zhang, J. Zhu, Y. Wang, H. L. W. Chan, and C. L. Choy, Thin Solid Films, 375, p. 184 (2000). 16. W. Hofman, S. Hoffmann, and R. Waser, Thin Solid Films 305, 66 (1997). 17. S. F. Wang, Y. C. Hsu, J. P. Chu, and C. H. Wu, Appl. Phys. Lett., 88, 042909 (2006). 18. S. F. Wang, Y. C. Wu, Y. C. Hsu, J. P. Chu, and C. H. Wu, Jap. J. Appl. Phys., 46, p. 2978 (2007). 19. Jayesh Nath, Dipankar Ghosh, Wael Fathelbab, Jon-Paul Maria, Angus I. Kingon, Paul D. Franzon, and Michael B. Steer, “An Electronically – Tunable Microstrip Bandpass Filter Using Thin – Film Barium Strontium Titanate (BST) Varactors,” IEEE, Trans. Microwave Theory Tech., 53, pp. 2707-2712 (2005). 20. Jayesh Nath, Dipankar Ghosh, Jon-Paul Maria, Michael B. Steer, and Angus I. Kingon, “A Tunable Combline Bandpass Filter Using Thin Film Barium Strontium Titanate (BST),” Proceedings of the Asia Pacific Microwave Conference (APMC), New Delhi, India, pp. 939-940 (2004). 21. G. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters, impedance matching networks, and coupling structures,” Artech House Inc., Norwood (1980). 22. Jayesh Nath, Dipankar Ghosh, Wael Fathelbab, Jon-Paul Maria, Angus I. Kingon, Paul D. Franzon, and Michael B. Steer, “A Tunable Combline Bandpass Filter Using Thin Film Barium Strontium Titanate Interdigital Varactors on an Alumina Substrate,” IEEE MTT-S Int. Microwave Symp.Dig., in press (2005). 23. A. J. Moulson and J. M. Herbert, “Electroceramics Materials, Properties, Applications,” Chapman and Hall (1990). 24. Y. S. Cho, K. H. Yoon, “Dielectric ceramics,” Handbook of Advanced Electronic and Photonic Materials and Devices, Vol. 4 Ferroelectrics and Dielectrics, 175 (2000). 25. E. M. Levin, and H. F. Mcmurdie, “Phase Diagrams For Ceramists,” The American Ceramic Society, USA (1975). 26. Z. Jin, A. Tombak, J. P. Maria, B. Boyette, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Microwave Characterization of Thin Film BST Material Using a Simple Measurement Technique,” IEEE, MTT-S Int. Microwave Symp. Dig., 2, pp.1201-1204 (2002). 27. D. J. Taylor, “Handbook of Thin Film Devices,” 5, Academic Press, USA (2000). 28. S. S. Gevorgian, T. Martinsson, P. L. J. Linner, and E. L. Kollberg, “CAD models for multilayered substrate Interdigital capacitors,” IEEE Trans. Microwave Theory Tech., 44, pp. 896-904 (1996). 29. Z. Jin, “Frequency Agile RF/microwave Circuits using BST Varactors,” PhD Thesis, NCSU (2003). 30. R. Waser, “Nanoelectronics and Information Technology,” Wiley-VCH, Germany (2003). 31. Chu-Fang Liu, “Preparation and Characterization of Mn-doped BaTiO3 Films By RF Sputtering,” Master Thesis, NTOU (2002). 32. Milton Ohring, “Electrical and Magnetic properties of Thin Films,” The material Science of Thin Films (1992). 33. H. S. Nalwa, “THE ELECTRICAL PROPERTIES OF HIGH DIELECTRIC CONSTANT AND FERROELECTRIC THIN FILMS FOR VERY LARGE SCALE INTEGRATION CIRCUITS,” Handbook of Thin Film Materials, Vol. 3, Ferroelectric and Dielectric Thin Films (2002). 34. Y. Xu, “Ferroelectric Materials and Their Applications,” Elsevier Science, Amsterdam (1991). 35. F. Jona and G. Shirane, “Ferroelectric Crystals,” Dover, New York (1993). 36. M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials,” Clarendon, Oxford (1977). 37. M. H. Francombe, “Ferroelectric Films for Integrated Electronics,” Physics of Thin Films, Vol. 17, p. 225, Academic Press, USA (1993). 38. P. C. Fazan, Integ. Ferroelec. 4, 247 (1994). 39. J. F. Scott, “Ferroelectric Memories.” Springer-Verlag, Berlin (2000). 40. T. Hori, “Gate dielectrics and MOS ULSIs, Principles, Technologies, and applications,” Springer-Verlag, Berlin (1997). 41. J. Carrano, C. Sudhama, V. Chikarmane, J. Lee, A. Tasch, W. Shepherd, and N. Abt, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 38, 690 (1991). 42. R. Moazzami, C. Hu, and W. H. Shepherd, IEEE Trans. Electron Devices 39, 2044 (1992). 43. C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab, and J. C. Lee, J. Appl. Phys. 75, p.1014 (1994). 44. E. M. Philofsky, “1996 International Nonvolatile Memory Technology Conference,” p. 99 (1996). 45. R. E. Jones, P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu, and S. J. Gillespie, Thin Solid Films 270, p. 584 (1995). 46. T. Mihara, H. Yoshimori, H. Watanabe, and C. A. Pas de Araujo, Jpn. J. Appl. Phys. 34, p. 5233 (1995). 47. D. W. Bondurant and F. P. Gnadinger, IEEE Spectrum 30 (1989). 48. M. Sayer, Z. Wu, C. V. R. Vasant Kumar, D. T. Amm, and E. M. Griswold, Can. J. Phys. 70, p. 1159 (1992). 49. D. W. Bondurant, Ferroelectrics, 112, p. 273 (1990). 50. A. Ishitani, P. Lesaicherre, S. Kamiyama, K. Ando, and H. Watanabe, IEICE Trans. Electron. E76-C, p. 1564 (1993). 51. S. Sinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, J. Vac. Sci. Technol., A 10, p. 1554 (1992). 52. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park, and J. J. Kim, Appl. Phys. Lett., 69, p. 4182 (1996). 53. J. O. Olowolafe, J. Li, J. W. Mayer, and E. G. Colgan, Appl. Phys. Lett., 58, p. 469 (1991). 54. B. Li, T. D. Sullivan, T. C. Lee, and D. Badami, Microelectronics Reliability, 44, p. 365 (2004). 55. G. S. Chae, H. S. Soh, W. H. Lee, and J. G. Lee, J. Appl. Phys., 90, p. 411 (2001). 56. J. You, J. Kang, D. Kim, J. J. Pak, and C. S. Kang, Solar Energy Mater. Solar Cells, 79, p. 339 (2003). 57. S. P. Murarka and S. W. Hymes, “Copper metallization for ULSI and beyond,” Critical Reviews in Solid State and Materials Sciences, 20, p. 87 (1995). 58. S. P. Heng, International Symposium on VLSI TSA, p. 164 (1995). 59. H. Ono, T. Iijima, N. Ninomiya, A. Nishiyama, Y. Ushiku, and H. Iwai, “Topology of Silver Films Annealed in Air,” Japan Society of Appl. Phys., 40th Spring Meeting, Ext. Abstracts, p. 814 (1993). 60. J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett., 14, p. 249 (1993). 61. H. K. Kang, I. Asano, C. Ryu, and S. S. Wong, “Grain structure and electromigration properties of CVD Cu metallization,” in 1993 IEEE VMIC Conf., p. 223 (1993). 62. K. P. Rodbell, E. G. Colgan, and C. K. Hu, “Manufacturability versus reliability issues relevant to interconnect metallizations,” in Proc. of Advanced Metallization for Devices and Circuits-Science, Technology and Manufacturability, p. 59 (1994). 63. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits 2nd Edition, John Wiley & Sons, Inc., p. 1 (1986). 64. Mayumi Takeyama, Atsushi Noya, Touko Sase, Akira Ohta, and Katsutaka Sasaki, J. Vac. Sci. Technol. B 14(2) (1996). 65. W. F Wu, K. L Ou, C. P Chou, and C. C Wu, J. Electrochem. Soc., 150 (2) G83-G89 (2003). 66. X. P. Qu, J. J. Tan, M. Zhou, T. Chen, Q. Xie, G. P. Ru, and B. Z. Li, Appl. Phys. Lett. 88, 151912 (2006). 67. L. C. Leu, D. P. Norton, L. McElwee-White, and T. J. Anderson, Appl. Phys. Lett., 92, 111917 (2008). 68. Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, Microelectronic Engineering, 75 (3), p. 309-315 (2004). 69. J. P. Chu and C. H. Lin, Appl. Phys. Lett., 87, 211902 (2005). 70. J. P. Chu, C. H. Lin, and Y. Y. Hsieh, J. Electro. Mater., 35, 76 (2006). 71. J. P. Chu and C. H. Lin, J. Electron. Mater., 35, 1933 (2006). 72. J. P. Chu, C. H. Lin, and V. S. John, Appl. Phys. Lett., 91, 132109 (2007). 73. J. P. Chu, C. H. Lin, P. L. Sun, and W. K. Leau, J. Electrochem. Soc., 156, H540 (2009). 74. J. P. Chu, W. K. Leau, and C. H. L in, Appl. Phys. Lett., 93, 164104 (2008). 75. J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, IEEE Electron Device Lett., 22,230 (2001). 76. M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, Tech. Dig.-International Electron Devices Meeting, p. 157 (2000). 77. A. Kar-Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang, and A. Yin, in Proceedings of the IITC, p. 245 (1999). 78. R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer, and W. Hoesler, Mater. Res. Soc. Symp. Proc., 243, 123 (1992). 79. K. C. Tsai, W. F. Wu, C. C. Chao, J. T. Lee, and S. W. Shen, Jpn. J. Appl. Phys., Part 1, 45, 5495 (2006). 80. K. C. Tsai, W. F. Wu, and C. G. Chao, J. Electron. Mater., 35, G492 (2006). 81. K. C. Tsai, W. F. Wu, C. G. Chao, and C. P. Kuan, J. Electrochem. Soc., 153, G492 (2006). 82. W. Fan, S. Saha, J. A. Carlisle, O. Auciello, R. P. H. Chang, and R. Ramesh, Appl. Phys. Lett., 82, 1452 (2003). 83. W. Fan, S. Saha, J. A. Carlisle, O. Auciello, R. P. H. Chang, and R. Ramesh, J. Appl. Phys., 94, 6192 (2003). 84. S. Ezhilvalavan and Tseung Yuen Tseng, Thin Solid Films, 360, p. 268-273 (2000). 85. C. H. Wu, J. P. Chu, C. H. Lin, and S. F. Wang, J. Electrochem. Soc., 156 (12) G226 (2009). 86. J. P. Chu, Y. Y. Hsieh, C. H. Lin, and T. Mahalingam, J. Mater. Res., 20, 6, p. 1379 (2005). 87. C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin, and S. F. Wang, J. Electro. Mater., 32, 11, p. 1235 (2003). 88. C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin, and S. F. Wang, J. Mater. Res., 18, 6, p. 1429 (2003). 89. T. Mahalingam, C. H. Lin, L. T. Wang, and J. P. Chu, Mater. Chem. and Phys., 100, p. 490 (2006). 90. J. P. Chu, C. H. Lin, and V. S. John, Vacuum, 83, p. 668 (2009). 91. Akimoto, J., Gotoh, Y. and Oosawa, Y., Acta Cryst., C50, p. 160-161 (1994). 92. R. M. Glaister and H. F. Kay, Proc. Phys. Soc., 76, p. 763 (1960). 93. C. N. R. Rao and J. Gopalakrishnan, “New Directions in Solid State Chemistry,” p. 52-57 (1997). 94. O. Eibl, P. Pongratz, P. Skalicky and H. Schmelz, “Extended defects in hexagonal BaTiO3,” Philosophical Magazine A, 60, p. 601-612 (1989). 95. S. F. Wang, Y. C. Hsu, Jinn P. Chu and C. H. Wu, Appl. Phys. Lett., 88, 042909 (2006). 96. C. V. R. Vasant Kumar and Abhai Maningh, IEEE, p. 713 (1990). 97. C. V. R. Vasant Kumar, Ajay Dhar, and Abhai Maningh, Appl. Phys. Lett., 60 (8), 24 (1992). 98. Jung-Kun Lee, Kug-Sun Hong and Jin-Wook Jang, J. Am. Ceram. Soc., 84 (9) (2001). 99. C. H. Wu, J. P. Chu, and S. F. Wang, J. Appl. Phys. 98, 026109 (2005). 100. P. C. Joshi and M. W. Cole, Appl. Phys. Lett. 77, 289 (2000). 101. D. Kim, Appl. Surf. Sci. 218, 78 (2003). 102. J. I. Itoh, D. C. Park, N. Ohashi, I. Sakaguchi, I. Yashima, H. Haneda, and J. Tanaka, Jpn. J. Appl. Phys., PartⅠ, 41, 3798 (2002). 103. K. Takada, E. Chang, and D. M. Smith, J. Am. Ceram. Soc. 19, 147 (1985). 104. S. F. Wang, Jinn P. Chu, C. C. Lin, and T. Mahalingam, J. Appl. Phys. 98, 014107 (2005). 105. John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation (1992). 106. C. S. His, C. Y. Chen, N. C. Wu, and M. C. Wang, J. Appl. Phys. 94, 598 (2003). 107. M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys. 82, 3482 (1997). 108. C. C. Hwang, C. C. Jaing, M. J. Lai, J. S. Chen, S Huang, M. H. Juang, and H. C. Cheng, Electrochem. Solid-State Lett. 3, 563 (2000). 109. S. S. Kim and C. Park, Appl. Phys. Lett. 75, 2554 (1999). 110. S. Y. Lee and T. Y. Tseng, Appl. Phys. Lett. 80, 1797 (2002). 111. The Materials Science of Thin Films, Milton Ohring (1992). 112. C. H. Wu, J. P. Chu, W Z. Chang, V. S. John, S. F. Wang, and C. H. Lin, J. Appl. Phys., 103, 014106 (2008). 113. J. Lee, Y. C. Choi, and B. S. Lee, Jpn. Appl. Phys., Part 1, 36, 3644 (1997). 114. Y. C. Hsu, Densification, Microstructure, Evolution and Microwave Dielectric Properties of Hexagonal Ba(Ti1-xRx)O3 ceramics (R = Mn, Fe, Co, Ni, Zn, Mg, In), MS Thesis, NTUT, Taiwan (2006).
|