(34.204.185.54) 您好!臺灣時間:2021/04/11 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭秦榕
研究生(外文):Ching-Jung Kuo
論文名稱:原有合法旅社防火避難改善之研究以台北市為例
論文名稱(外文):A study on Improving Fire Safety of Existing Hotels in Taipei
指導教授:林慶元林慶元引用關係
指導教授(外文):Ching-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:建築系
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:150
中文關鍵詞:原有合法旅社&原有合法旅社&原有合法旅社&原有合法旅社&原有合法旅社&
外文關鍵詞:technical certification on the safety functionsrisk indicators of fire
相關次數:
  • 被引用被引用:1
  • 點閱點閱:239
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
98年3月2日台北市太原路白雪大旅社發生十幾年來最嚴重大火,造成7死1重傷慘劇,台北市建築管理處隨即清查轄內僅設一座樓梯之原有合法旅社共計有11家(包括白雪旅社),由於此類場所皆依建築法第77條第3項規定,完成公共安全檢查申報並經專業檢查人員簽證「合格」,惟仍造成重大傷亡,為加強輔導改善,避免此類憾事再發生。
本研究係針對11家旅社中剔除2家已設置安全梯型式案例、並扣除1家市定古蹟(依文化資產保存法,可排除建築法一部或全部相關規定)之案例後,其餘案例皆屬相似之平面配置,是取樣三家旅社並模擬起火室於旅社房間,藉以(水平區劃)模擬改善旅社房間門為防火門及遮煙性防火門之成效為何?另再挑選乙案模擬起火室為梯間(垂直區劃),模擬直通樓梯有、無防火區劃造成之差異,其結果可提供北市府補助業者改善防火避難設施決策參考,另提出修法之建議。
本研究應用火場模擬軟體FDS及建築物防火避難安全性能驗證技術手冊作為模擬工具,以居室未設置防火門(情境1)、更換為防火門(情境2)、更換為遮煙性防火門(情境3)(CNS11227、CNS15038)、梯間未區劃(情境4)、梯間完成區劃(情境5)等改善項目為輸入變數,藉由模擬結果加以比較及分析,得到結論如下:
一、水平(面積)區劃部分
1.依原有合法旅社現況,樓層內旅社房間門未防火區劃情況下,經由模擬結果得知,火災中人體承受危險因子快慢順序為:溫度>可視距離>CO2濃度>O2濃度>CO濃度。
2.樓層內水平區劃更換為一般防火門時,因遮煙性能較差,火災中濃煙經由防火門縫隙滲出,可視距離縮短(唯一超過危害標準)仍會造成逃生避難障礙。
3.樓層內水平區劃更換為遮煙性防火門時,火災中人體承受危險因子值皆低於標準,可確保逃生避難安全。
二、垂直(豎道)區劃部分
1.當起火點位於梯間,又梯間未垂直區劃時,火勢迅速造成逃生避難障礙,更甚於旅社房間起火,危害程度最為快速(僅78秒)。
2.將直通樓梯垂直區劃(一般性防火門)後,可阻斷起火層溫度向上延昇,惟煙流仍向上流竄,起火層以外之樓層於建築物避難完成時間到達前,火災危害指標仍未造成逃生避難障礙,尚有足夠時間逃生避難通往避難層或屋頂平台。
On 2nd March of 2009, one of the most devastating fires broke out at White Snow Hotel at Tai-yuan Road of Taipei City, with the tragic result of 7 deaths and 1 serious injury. As of it, the Building Administration Office (BAO) of Taipei City has immediately carried out sweeping check and inspection within its jurisdiction, and it is found that there are now a total of 11 previously-legitimate hotels still existent that are installed only with one stairway. Since establishment of the kind has been completed with public safety examination and declaration according to the stipulation of paragraph 3 of article 77 of Building Law, and has been checked and certified by professional inspectors as “Qualified,” nonetheless, serious casualties are resulted. As such, assistance and counseling for improvement is strengthened so as to avoid the occurrence of similar tragedy.

This study would focus on the 11 hotels, after eliminating the case of those 2 hotels that are already installed with the type of fire escape and the case of 1 city-designated monument (based on Cultural Assets Preservation Law, related stipulations of the Building Law can be partially or wholly excluded), and the rest of the cases are reckoned of similar 2-D configuration. Thus, it is planned that 3 of the hotels would be taken as samples, while fire is simulated to burst out from hotel room so that (horizontal compartmentalization) it is simulated as how the door of hotel room can effect if it is taken fire-proof door as well as smoke-blockage fire-proof door? Besides, case B is further selected to simulate the room of fire is at the stairway (vertical compartmentalization) so as to simulate the difference with scenarios of fire-prevention and lack of fire-prevention zone at the straight stairs. The results of which can be provided to Taipei City Government as reference of decision making as it requests operators to carry out improvement or offers subsidy to install fire-prevention and disaster escape facilities. Suggestions for law modification are also put forth.

This study has made use of fire-site simulation software FDS and technical certification handbook on the safety functions of fire-prevention and escape for buildings as tools of simulation. In addition, items for improvement as sitting room not installed with fire-proof door (scenario 1), change into fire-proof door (scenario 2),fire-blockage (scenario 3)(CNS11227、CNS15088), uncompartmentalized zone (scenario 4), and completion of stairways compartmentalization (scenario 5) are exploited as input variables. Then, simulation results are used for correlation and analysis, with conclusions obtained as follows:
1.Part of horizontal compartmentalization
a. In accordance with the status quo of the previously-legitimate hotels and under the context that they are not installed with compartmentalized fire-prevention zone, it is learned from the simulation results that the magnitude of risk factor that human body can suffer is: temperature > visible distance > concentration of CO2 > concentration of O2> concentration of CO.

b. When horizontal compartmentalized zone is changed into regular fire-proof door, since its effect of smoke-blockage is inferior and strong smoke can have penetrated from the seams of fire-proof door during fire, visible distance can then be shortened (the only one that exceeds risk criteria), thus creating obstruction to fire escape and evacuation.

c. Horizontal compartmentalized zone is changed with smoke-blockage and fire-proof door, and the values of all risk factors that human body can suffer are below the criteria, which can ensure safety for fire escape and evacuation.

2.Part of vertical compartmentalization
a. When the spot of fire is found at the stairway and if the stairway is not designed with vertical compartmentalization, the fire can spread out quickly, turning itself into obstruction for fire escape. Besides, the extent of such fire can be even more dangerous and quickly than fire burst out from hotel room (take merely 78 seconds).

b. Once the straight stairs are designed with vertical compartmentalization (regular fire-proof door), it can insulate the temperature of the fire-breakout tier from rising, but the smoke flow would still fee upward. Nonetheless, risk indicators of fire have not yet rendered into obstruction for fire escape and evacuation before the time of fire escape for the entire building has reached, and there will still be sufficient time to run to fire escape at the shelter floor or platform at rooftop for evacuation.
目 錄
中文摘要 IV
英文摘要Abstract of Thesis VI
誌謝 IX
目 錄 X
圖 索 引 XII
表 索 引 XIII
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究範圍與內容 2
1.3 研究方法 4
1.4 研究流程 6
第二章 文獻回顧 7
2.1 國內建築物公共安全檢查相關法令研析 7
2.3 電腦火災模擬之模式架構 21
2.4 建築物防火避難安全性能驗證技術手冊【A4】(以下簡稱技術手冊) 23
2.5 火場、煙流性質 26
第三章 火災模擬與避難驗證 31
3.1 模擬意義與目的 31
3.2 模擬方法與流程 32
3.3 模擬對象物 34
3.4 模擬參數及邊界條件設定 34
3.5 煙流模擬變數設定 37
3.6 煙流模擬量測項目 38
3.7 FDS模型物件設定與邊界條件 39
3.8 避難時間模擬計算 40
第四章 模擬結果與討論 42
4.1 避難所需時間分析 42
4.2 容許避難時間分析 50
4.3 避難安全驗證結果 56
第五章 結論與建議 58
5.1 結論 58
5.2 建議 59
參 考 文 獻 61
附錄 64
附錄1不同情境下,五項危害因子於整棟避難完成時間前統計資料 64
附錄2不同情境下,五項危害因子整棟避難完成時間前3D動畫模擬 120
(A)中文部分
1.公共安全檢查簽證及申報指導手冊,臺北市建築管理處,97-5版。
2.林慶元,台北市室內裝修暨公共安全法令研習會講義彙編,2008年版
3.建築物防火避難安全性能驗證技術手冊,內政部建築研究所,98年。
4.陳弘毅,「火災學」,2008。
5.何明錦、簡賢文,「舊有建築物防火安全評估與改善技術之開發」,研究計畫期末報書,內政部建築研究所,2004。
6.陳建忠、蔡尤溪、林啟基、蘇水波、許文泉,「鈴木華城住宅天井火災之煙囪效應及防止延燒對策」,研究計畫期末報書,內政部建築研究所,2008。
7.陳建銘,「舊有建築物住宅直通樓梯梯間避難安全性能改善研究-建築防火避難設施改善方法與其成效分析」,碩士論文,國立台灣科技大學,2006。
(B)外文部分
1.Kevin McGrattan Glenn Forney,” Fire Dynamics Simulator
(Version 4)User's Guide”,NIST,U.S,2005。
2.George V. Hadjisophocleous and Noureddine Benichou, ”FIRE SAFETY DESIGN GUIDELINES FOR FEDERAL BUILDINGS”,SFPE, 1998, p96~p97.
3.SFPE Handbook of Fire Protection Engineers , Third Editiom.
4.田中哮義,「建築火災安全工學入門」,財團法人日本建築中心,2002。
5.室崎益輝,「建築防災與安全」,鹿島出版會, 1993年。
(C)網站資料
1.中時電子報,http://video.chinatimes.com/video-bydate-cnt.aspx?cid=4&nid=3000
2.黃建榮,建築研究簡訊第65期 CNS 15038「建築用門遮煙性試驗法」,內政部營建署網站http://www.abri.gov.tw/utcPageBox/CHIMAIN.aspx?ddsPageID=CHIMDB&DBID=1020
3.Fire Dynamics Simulator and Smokeview (FDS-SMV),http://fire.nist.gov/fds/.
4.內政部消防署,http://www.nfagovtw/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔