跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程俞銘
研究生(外文):Yu-ming Cheng
論文名稱:以密度泛函理論研究鎳(111)表面上之水氣轉移反應和乙醇裂解
論文名稱(外文):A DFT Study of Water-gas Shift Reaction and Ethanol Decomposition on Ni(111) Surface
指導教授:江志強江志強引用關係
指導教授(外文):Jyh-Chiang Jiang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:100
中文關鍵詞:DFT水氣轉移反應乙醇裂解鎳(111)表面
外文關鍵詞:DFTwater-gas shift reactionethanol decompositionNi(111)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用密度泛函理論(DFT)的計算來探討在鎳(111)表面上的水氣轉移反應和乙醇的裂解。水氣轉移反應在鎳(111)表面上有兩種機制,一種是redox mechanism,另一種是carboxyl mechanism。此兩種反應路徑的速率決定步驟皆為水分解這個步驟,其反應能障為0.94 eV。由計算結果可知乙醇有兩種穩定的吸附結構。結構A是以乙醇的氧端和亞甲基端吸附於表面上,此乙醇裂解主要路徑是CH3CH2OH → CH3CHOH → CH3CHO → CH3CO → CH3+CO,其速率決定步驟為乙醇中Cα–H鍵裂解,反應能障為1.13 eV。結構B則是以乙醇的氧端和甲基端吸附於表面上,其乙醇裂解主要路徑是CH3CH2OH → CH2CH2OH → CH2CH2O → CHCH2O → CCH2O → CCH2+O,速率決定步驟為2–羥乙基 (CH2CH2OH)中O–H鍵裂解,反應能障為1.49 eV。
Water-gas shift (WGS) reaction and ethanol decomposition on Ni (111) surface were studied using periodic DFT calculations. Two mechanisms of WGS reaction on Ni (111) surface, redox and carboxyl mechanisms, were considered in this study. The rate-determining step for both two mechanisms of WGS reaction is water activation which reaction barrier of this step is 0.94 eV. The calculations indicate that there are two favorable adsorption sites for ethanol on the Ni (111) surface. Both structures feature EtOH adsorbed on top of a Ni atom through its O atom, with the CH2 and CH3 groups sitting above the neighboring Ni atom for model A and model B, respectively. The most favorable pathway of ethanol decomposition in model A is CH3CH2OH → CH3CHOH → CH3CHO → CH3CO → CH3+CO and the rate-determining step of this pathway is the cleavage of Cα–H bond in ethanol with barrier of 1.18 eV. For ethanol decomposition in model B, the most favorable pathway is CH3CH2OH → CH2CH2OH → CH2CH2O → CHCH2O → CCH2O → CCH2+O and the rate-determining step of this pathway is the cleavage of O–H bond in 2–hydroxyethyl with barrier of 1.49 eV.
Abstract I
摘要 II
Contents III
Index of Figure V
Index of Table VIII
Chapter 1. Introduction 1
1.1 Fuel Cells 1
1.2 Water-Gas Shift Reaction 4
1.3 Hydrogen Production via Ethanol 7
1.4 Catalytic Performances 9
1.5 This Research 11
Chapter 2 Theoretical Background 12
2.1 Hartree Approximation 12
2.2 DFT Method 13
2.2.1 Description of Theory 13
2.2.2 Derivation and Formalism 16
2.3 Basis Set 20
2.4 Bloch’s Theorem and Plane Wave Basis Set 21
2.4.1 Bloch’s Theorem 21
2.4.2 Plane Wave Basis Set 24
2.4.3 K-Point Sampling 27
2.5 PAW Pseudopotential 28
2.5.1 Pseudopotential 28
2.5.2 Projected Augmented Wave (PAW) 34
2.6 GGA Approximation 36
2.7 NEB method 37
Chapter 3: Computational Details 40
3.1 Method 40
3.2 Surface Model 42
3.2.1 Bulk 42
3.2.2 Ni (111) surface 43
Chapter 4. Results and Discussion 45
4.1 Water-Gas Shift Reaction 45
4.1.1 Structure and Energetics of Absorbed Intermediates 45
4.1.2 Reaction Mechanisms 50
4.2 Ethanol Decomposition on Ni(111) Surface 62
4.2.1 Adsorption Properties of Reaction Intermediates 62
4.2.2 Reaction Mechanisms of Ethanol Decomposition on Ni(111) Surface 70
Chapter 5. Conclusion 95
Reference 96
1.George Wand. "Fuel Cells History, part 1" (PDF). Johnson Matthey plc. p. 14. http://www.fuelcelltoday.com/media/pdf/archive/Article_1104_Fuel%20Cell%20History%20Part%201.pdf. Retrieved 2008-10-06.
2.Grove, W. R. Phil. Mag. Ser. 1839, 314, 127.
3.Philosophical Magazine and Journal of Science vol. XXI (1842), pp 417-420.
4.Bacon, F. T. Electrochim. Acta 1969, 14, 569.
5.Larminie, J; Dicks, A. Fuel Cell Systems Explained 2nd ed.; Wiley Inc.: England. 2003.
6.Perry, M. L.; Fuller, T. f. J. Electrochem. Soc. 2002, 7, 149.
7.http:/www.fuelcelltoday.com
8.http:/www.rmi.org/sitepages/pid556.php
9.Satterfield, C. N. Heterogeneous Catalysis in Industrial Practice, 2nd ed.; McGraw-Hill: New York, 1991.
10.Koryabkina, N. A.; Phatak, A. A.; Ruettinger, W. F.; Farruto, R. J.; Rebeiro,F. H. J. Catal. 2003, 217, 233.
11.Ovesen, C. V.; Stoltze, P.; Norskov, J. K.; Campbell, C. T. J. Catal. 1992,134, 445.
12.Campbell, C. T.; Ernst, K. H. Surface science of catalysis: In situ probes and reaction kinetics; Dwyer, D. J., Hoffmann, F. M., Eds.; ACS Symposium Series 482; American Chemical Society: Washington, DC, 1992; p 130.
13.Grenoble, D. C.; Estadt, M. M.; Ollis, D. F. J. Catal. 1981, 67, 90.
14.Ovesen, C. V.; Clausen, B. S.; Schiotz, J.; Stolze, P.; Topsoe, H.; Norskov,J. K. J. Catal. 1997, 168, 133.
15.Campbell, C. T.; Daube, K. A. J. Catal. 1987, 104, 109.
16.Campbell, C. T.; Koel, B. E.; Daube, K. A. J. Vac. Sci. Technol., A 1987,5, 810.
17.Ernst, K.-H.; Campbell, C. T.; Moretti, G. J. Catal. 1992, 134, 66.
18.Hinrichsen, O.; Genger, T.; Muhler, M. Stud. Surf. Sci. Catal. 2000, 130, 3825.
19.Xue, E.; O’Keeffe, M.; Ross, J. R. H. Catal. Today, 1996, 30, 107.
20.Capek, P.; Klusacek, K. Catal. Today, 1994, 20, 367.
21.Nakamura, J.; Cambell, J. M.; Campbell, C. T. J. Chem. Soc., Faraday Trans. 1990, 86, 2725.
22.Chen, C.-S.; Cheng, W.-H.; Lin, S.-S. Appl. Catal., A 2003, 238, 55.
23.Chen, C.-S.; Cheng, W.-H. Catal. Lett. 2002, 83, 121.
24.Tserpe, E.; Waugh, K. C. Stud. Surf. Sci. Catal. 1997, 109, 401.
25.Shido, T.; Iwasawa, Y. J. Catal. 1993, 140, 575.
26.Campbell, C. T. Promoters and Poisons in the Water-Gas Shift Reaction. In The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis;King, D. A., Woodruff, D. P., Eds.; Elsevier: Amsterdam, 1993; Vol. 6;p 287.
27.Yoshihara, J.; Parker, S.; Schafer, A.; Campbell, C. T. Catal. Lett. 1995, 31, 313.
28.Yoshihara, J.; Campbell, C. T. J. Catal. 1996, 161, 776.
29.Liu, P.; Rodriguez, J. A. J. Chem. Phys. 2007, 126, 164705.
30.Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Angew. Chem.,Int. Ed. 2007, 46, 1329.
31.Wang, G.; Jiang, L.; Cai, Z.; Pan, Y.; Zhao, X.; Huang, W.; Xie, K.; Li,Y.; Sun, Y.; Zhong, B. J. Phys. Chem. B 2003, 107, 557.
32.Jakdetchai, O.; Nakajima, T. J. Mol. Struct.: THEOCHEM 2002, 619, 51.
33.Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M. J. Phys. Chem. C 2008, 112, 4608.
34.Gokhale, A. A.; Dumesic, J. A.; Manos Mavrikakis, M. J. Am. Chem. Soc. 2008, 130, 1402.
35.Ovesen, C. V.; Clausen, B. S.; Hammershoi, B. S.; Steffensen, G.; Askgaard, T.; Chorkendorff, I.; Norskov, J. T.; Rasmussen, P. B.; Stoltze, P.; Taylor, P. J. Catal. 1996, 158, 170.
36.Mhadeshwar, A. B.; Vlachos, D. G. Catal. Today 2005, 105, 162.
37.Mhadeshwar, A. B.; Vlachos, D. G. J. Phys. Chem. B 2004, 108, 15246.
38.P. D. Vaidya, A. E. Rodrigues, Chem. Eng J. 117 (2006) 39–49.
39.Xu, J.; Zhang, X.; Zerobi, R.; Yoshihobu, J.; Xu, Z.; Yates, J. T. Surf. Sci.1991, 256, 288.
40.Papageorgopoulos, D. C.; Ge, Q.; King, D. A. J. Phys. Chem. 1995, 99,17645.
41.Lee, A. F.; Gawthrope, D. E.; Hart, N. J.; Wilson,K. Sur. Sci. 2004, 548, 200.
42.Sexton, B. A.; Rendulic, K. D.; Hughes, A. Z. Surf. Sci. 1982, 121, 181.
43.Zhang, R.; Gellman, A. J. J. Phys. Chem. 1991, 95, 7433.
44.Davis, J. L.; Barteau, M. A. Surf. Sci. 1990, 235, 235.
45.Shekhar, R.; Barteau, M. A. Catal. Lett. 1995, 31, 221.
46.Bowker, M.; Holroyd, R. P.; Sharpe, R. G.; Corneille, J. S.; Francis, S. M.;Goodman, D. W. Surf. Sci. 1997, 370, 113.
47.http://ec.europa.eu/research/energy/pdf/efchp_hydrogen6.pdf
48.D. K. Liguras, D. I. Kondarides, X. E. Verykios. J. Power Sour. 130 (2004) 30–37.
49.D.C. Grenoble, M.M. Estadt, D.F.Ollis, J.Catal.1981, 67, 90-102.
50.N.Schumacher, A. Boisen, S.Dahl, A. A.Gokhale, S.Kandoi, L.C.Grabow, J.A. Dumesic, M.Mavrikakis, I.Chorkendorff. J. Catal.2005, 229, 265-275.
51.C. Callaghan, I. Fishtik, R. Datta, M.Carpenter, M.Chmielewski, A.Lugo. Surf.Sci.2003, 541, 21-30.
52.Zeigarnik, A. V.; Callaghan, C. A.;Datta, R.; Fishtik, I.;Shustorovich, E.Kinetics and Catalvsis 2005,46,543.
53.Tanaka, Y.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Eguchi, K. Applied Catal. A: General 2002, 6032, 1.
54.C. V. Ovesen. B.S. Clausen, B. S. Hammershoi, G. Steffensen, T. Askgaard,I. Chorkendorff, J. T. Norskov, P. B. Rasmussen, P. Stoltze, P. Taylor. J. Catal.1996, 158,170-180.
55.X.-Q.Wang, J.A. Rodriguez, J. C.Hanson, D. Gamarra, M.-A. Arturo, F.-G.Marcos., J. Phys. Chem. B.2006, 110, 428-434.
56.R. Wolfgang, O. Ilnich, R.J.Farrauto.J. Power Sources, 118, 61-65, 2003.
57.G. Germani and Y. Schuurman. Peactor, Kinetic and Catalysis, 2006, 52, 1806-1813.
58.H. Tominaga and M. Nagai. J.Phys. Chem. B 2005, 109, 20415-20423.
59.P. D. Vaidya, A. E. Rodrigues, Chem. Eng J. 117 (2006) 39–49.
60.A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy & Fuels 19 (2005) 2098–2016.
61.Ni M, Leung MKH, Leung Dennis YC, Int J Hydrogen Energy 32 (2007) 3238–3247.
62.S. Therdthianwong, C. Siangchin, A. Therdthianwong, fuel processing technology 89 (2008) 160-168.
63.http://www-theor.ch.cam.ac.uk/people/ross/thesis
64.http://www.answers.com/topic/density-functional-theory
65.Vuilleumier, Kohn-Sham Method in Plane Waves, November 25, 2004.
66.D. Roundy, R. Cornell University, DFT plane wave pseudo potential October 10, 2005.
67.Gonze1, X.; Finocchi, F. Physica Scripta, 2004, 109, 40.
68.Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 18.
69.Henkelman. G.; Jonsson. H. J. Chem. Phys. 2000, 113, 997
70.Dreizler, R.; Gross, E. Density Functional Theory (Plenum Press, New York, 1995).
71.Hohenberg. P.; Kohn, W. Phys. Rev. 1964, 136, B864.
72.Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
73.Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. Phys. Rev. B 1992, 46, 6671.
74.Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
75.CRC Handbook of Chemistry and Physics, 83rd ed., edited by D. R. Lide (CRC, New York, 2002).
76.Pozzo et al. J. Chem. Phys. 126, 164706 2007.
77.Jonsson, H.; Mills, G.; Jacobsen, K. W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transition, In Classical and Quantum Dynamics in Condensed Phase Simulations, Berne, B. J.; Ciccotti, G.; Coker, D. F., Eds.; World Scientific, 1998.
78.Mills, G.; Jonsson, H. Phys. Rev. Lett. 1994, 72, 1124.
79.Mills, G.; Jonsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
80.G. Kresse and J. Hafner, Surf. Sci. 459, 287 (2000).
81.H. C. Lu, E. P. Gusev, E. Garfunkel, and T. Gustafsson, Surf. Sci. 352, 21 (1996).
82.L. Xu et al. Chemical Physics 323 (2006) 334–340.
83.Andreas Eichler, Surf. Sci. 526 (2003), p. 332.
84.Phatak et al., J. Phys. Chem. C, Vol. 113, No. 17, 2009.
85.Y.-A. Zhu, et al., Catal. Today (2009), dou:10.1016/j.2009.08.022.
86.Alcal a, R.; Mavrikakis, M.; Dumesic, J. A. J. Catal. 2003, 218, 178.
87.Inui, T.; Yamamoto, T. Catal. Today 1998, 45, 9.
88.Wang, Y.; Luo, H. Y.; Liang, D. B.; Bao, X. H. J. Catal. 2000, 196, 46.
89.Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98, 2744.
90.Szalay, P. G.; Fogarasi, G.; Nemes, L. Chem. Phys. Lett. 1996, 263,91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top