跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:粘凱翔
研究生(外文):Kai-siang Nian
論文名稱:利用二氧化鈦披覆於垂直成長之奈米碳管束陣列做為染料敏化太陽能電池陽極之研究
論文名稱(外文):Fabrication of dye-sensitized solar cells anode using TiO2 coated on vertically carbon nanotubes bundle arrays
指導教授:李奎毅
指導教授(外文):Kuei-yi Lee
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:68
中文關鍵詞:奈米碳管二氧化鈦染料敏化太陽能電池
外文關鍵詞:carbon nanotubetitanium dioxidedye-sensitized solar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在染料敏化太陽能電池中,電子-電洞對是來自於染料受到光的激發後所產生,因此增加染料敏化太陽能電池的效能最有效的方法就是增加陽極之表面積及導電性,為了增加染料分子附著的量,本實驗不僅利用奈米碳管具有大表面積、良好導電性、化學穩定性佳、電子傳輸速率快之優點,且將奈米碳管以黃光微影製程將其作成方型陣列的形式,結合二氧化鈦奈米結構後,完成具有大表面積之陽極,本實驗之垂直配向奈米碳管陣列利用熱化學氣相沉積系統將其成長於不銹鋼基板上,隨後利用有機化學氣相沉積系統將二氧化鈦直接披覆於奈米碳管表面,垂直成長之奈米碳管陣列不僅增加二氧化鈦與基板間的導電性,同時方型陣列的形式亦增加了染料的吸附面積;此外亦將二氧化鈦以退火的方式去除Ti3+及氧缺陷,本研究以不同陣列大小及不同退火時間為參數,在陣列最佳化的實驗中,陣列大小為10: 10 m,陣列間距為10 m之奈米碳管陣列能達到最佳效能,利用退火去除二氧化鈦缺陷的實驗中,40分鐘的退火時間能夠有效的去除Ti3+缺陷。最佳光電特性之開路電壓(Voc)、短路電流密度(Jsc)、填充因子(FF)與光電轉換效率()分別為0.42 V、8.5 mA-cm-2、64%、3.3%.
n order to improve the photoelectric conversion efficiency (η) of dye-sensitized solar cells (DSSCs), the most effective method is to enhance the anode with electrical conductivity and usable surface area because electron-hole pairs are produced from the dye after illumination. Carbon nanotubes (CNTs) have many advantages such as a large surface area, good electric conduction, and good chemical stability. To increase the effective surface area of dye absorption, we combined vertically aligned CNTs bundle arrays with TiO2 nanostructures to fabricate an anode with a larger surface area. This study reports the synthesis of the vertically aligned CNTs bundle arrays on stainless steel sheets and the direct coating of TiO2 nanostructures on all the vertically aligned CNTs using thermal chemical vapor deposition (TCVD). The resultant vertically aligned CNTs bundle arrays not only serve as a template to provide good electric connection between theTiO2 nanostructures and the stainless steel sheet but also result in an increased surface area of TiO2 coating for dye absorption. In addition, an annealing process for TiO2 was achieved; the TiO2 annealing time related to the Ti3+ defect which would reduce the electron transport rate in a DSSC, the optimal annealing times of the anode were founded to be 40 min that promote the η of the DSSCs efficiently. We presented the optimum photoelectric characteristics as a short circuit current density (Jsc) of 8.5 mA, open circuit voltage (Voc) of 0.42 V, fill factor (FF) of 64%, and η of 3.3%.
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖索引 Ⅴ
表索引 Ⅵ
第一章、緒論----------------------------------------------1
1.1 前言--------------------------------------------------1
1.2 染料敏化太陽能電池簡介--------------------------------3
1.2.1 染料敏化太陽能電池原理------------------------------3
1.2.2 染料敏化太陽能電池結構------------------------------6
1.2.3 電流電壓特性曲線------------------------------------9
1.3 研究動機---------------------------------------------10
1.4 奈米碳管---------------------------------------------12
1.5 二氧化鈦---------------------------------------------14
1.5.1簡介----------------------------------------------14
1.5.2 二氧化鈦-銳鈦礦------------------------------------14
1.5.3 二氧化鈦-金紅石------------------------------------15
第二章、實驗方法與設備-----------------------------------16
2.1 實驗流程---------------------------------------------16
2.2 實驗步驟---------------------------------------------17
2.2.1 基板製備-------------------------------------------17
2.2.2 黃光微影製程---------------------------------------17
2.2.3 電子束蒸鍍系統-------------------------------------18
2.2.4 成長奈米碳管---------------------------------------20
2.2.5 成長二氧化鈦---------------------------------------20
2.2.6 二氧化鈦退火---------------------------------------23
2.2.7 太陽能電池組裝-------------------------------------23
2.3 分析儀器及量測---------------------------------------24
2.3.1 掃描式電子顯微鏡(SEM)------------------------------24
2.3.2 穿透式電子顯微鏡(HRTEM)----------------------------25
2.3.3 X-射線繞射光譜(XRD)-------------------------------26
2.3.4 拉曼光譜(Raman spectroscopy)-----------------------26
2.3.5 螢光光譜儀-----------------------------------------26
2.3.6 光源-----------------------------------------------27
2.3.7 電化學分析儀---------------------------------------28
第三章、結果與討論---------------------------------------29
3.1奈米碳管束陣列分析------------------------------------29
3.2披覆二氧化鈦後之奈米碳管束陣列分析--------------------30
3.3奈米碳管束陣列大小對於DSSC效能影響之分析--------------36
3.4二氧化鈦退火時間對於DSSC效能影響之分析----------------39
第四章、結論---------------------------------------------48
參考文獻-------------------------------------------------49
簡歷-----------------------------------------------------56
[1]M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, and H. Yanagida,“Dye sensitization and surface structure of semiconductor electrodes,” Ind. Eng. Chem. Prod. Res. Dev., vol. 19, pp. 415-421, 1980.
[2]N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gr?鱸zel,“Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films,”J. Am. Chem. Soc., vol. 110, pp. 1216-1220, 1988.
[3]U. O. Kraŝovec, M. Berginc, M. Hoĉevar, and M. Topiĉ,“Unique TiO2 paste for high efficiency dye-sensitized solar cells,”Sol. Energy Mater. Sol. Cells, vol. 93, pp. 379-381, 2008.
[4]K.-M. Lee, C.-W. Hu, H.-W. Chen, and K.-C. Ho,“Incorporation carbon nanotubes in a low-temperature fabrication process for dye-sensitized TiO2 solar cells,”Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1628-1633, 2008.
[5]N. Robertson,“Optimizing dyes for dye-sensitized solar cells,”Angew. Chem. Int. Ed., vol. 45, pp. 2338-2345, 2006.
[6]A. Hagfeldt and M. Gr?鱸zel,“Light-induced redox reactions in nanocrystalline systems,” Chem. Rev., vol. 95, pp. 49-68, 1995.
[7]K. Kalyanasundaram and M. Gr?鱸zel,“Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coord. Chem. Rev.,vol. 77, pp. 347-414, 1998.
[8]M. Gr?鱸zel,“Mesoporous oxide junctions and nanostructured solar cells,” Curr.Opin. Colloid Interface Sci., vol. 4, pp. 314-321, 1999.
[9]X.-T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Sato, and A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films,” Sol. Energy Mater. Sol. Cells, vol. 81, pp. 197-203, 2004.
[10]K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida,“Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell,” Nanotechnology, vol. 18, pp. 365709-1-365709-5, 2007.
[11]K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank,“Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett., vol. 7, pp. 69-74, 2007.
[12]M. S. Akhtar, M. A. Khan, M. S. Jeon, and O.-B. Yang,“Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells,”Electrochim. Acta, vol. 53, pp. 7896-7874, 2008.
[13]N. N. Dinh, M.-C. Bernard, A. H. L. Goff, T. Stergiopoulos, and P. Falaras,“Photoelectrochemical solar cells based on SnO2 nanocrystalline films,”C. R. Chimie, vol. 9, pp. 676-683, 2006.
[14]D. B. Menzies, R. Cervini, Y.-B. Cheng, G. P. Simon, and L. Spiccia, “Nanostructured ZrO2-coated TiO2 electrodes for dye-sensitised solar cells,” J. Sol-Gel Sci. Technol., vol. 32, pp. 363-366, 2004.
[15]R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, “Efficiencies of electron injection from excited N3 into Nanocrystalline Semiconductor(ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films,”J. Phys. Chem. B, vol. 108, pp. 4818-4822, 2004.
[16]G. Oskam, B. V. Bergeron, G. J. Meyer, and P. C. Searson,“Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells,”J. Phy. Chem. B, vol. 105, pp. 6867-6873, 2001.
[17]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes,“Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,”Nano Lett., vol. 6, pp. 215-218, 2006.
[18]D.-J. Yang, H. Park, S.-J. Cho, H.-G. Kim, and W.-Y. Choi,“ TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area,”J. Phys. Chem. Solids, vol. 69, pp. 1272-1275, 2008.
[19]M. Hočevar, U. O. Kraŝovec, M. Berginc, G. Dražič, N. Hauptman, and M. Topič,“Development of TiO2 pastes modified with Pechini sol-gel method for high efficiency dye-seinsitized solar cell,”J. Sol-Gel Sci. Technol. vol. 48, pp. 156-162, 2008.
[20]M. Gr?鱸zel,“Photoelectrochemical cells,”Nature, vol. 414, pp. 338-344, 2001.
[21]M. A. Fox and M. T. Dulay,“Heterogeneous photocatalysis,”Chem. Rev., vol. 93, pp. 341-357, 1993.
[22]A. L. Linsebigler, G. Lu, and J. T. Yates, Jr.,“Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,”Chem. Rev., vol. 95, pp. 735-758, 1995.
[23]F.-T. Kong, S.-Y. Dai, and K. J. Wang,“Review of recent progress in dye-sensitized solars,”Adv. Optoelectron., vol. 2007, pp. 75384-75397, 2007.
[24]C.-Y. Yen, Y.-F. Lin, S.-H. Liao, C.-C. Weng, C.-C. Huang, Y.-H. Hsiao, C.-C. M. Ma, M.-C. Chang, H. Shao, M.-C. Tsai, C.-K. Hsieh, C.-H. Tsai, and F.-B. Weng, “Preparation and properties of a carbon nanotubes-based nanocomposite photoanode for dye-sensitized solar cells,”Nanotechnology, vol. 19, pp. 375305-1-375305-9, 2008.
[25]T. Y. Lee, P. S. Alegaonkar, and J.-B. Yoo,“Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes,”Thin Solid Films, vol. 515, pp. 5131-5135, 2007.
[26]S. L. Kim, S.-R. Jang, R. Vittal, J. Lee, and K.-J. Kim,“Rutile TiO2-modified multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells,”J. Appl. Electrochem., vol. 36, pp. 1433-1439, 2006.
[27]P. Brown, K. Takechi, and P. V. Kamat,“Single-walled carbon nanotubes scaffolds for dye-sensitized solar cells,”J. Phys. Chem. C, vol. 112, pp. 4776-4782, 2008.
[28]C. Liu, K. S. Kim, J. Baek, Y. Cho, S. Han, S.-W. Kim, N.-K. Min, Y. Choi, J.-U. Kim, and C. J. Lee,“Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles,”Carbon, vol. 47, pp. 1158-1164, 2009.
[29]W. Zhu, C. Bower, G. P. Kochanski, and S. Jin,“Electron field emission from nanostructured diamond and carbon nanotubes,”Solid-State Electron., vol. 45, pp. 921-928, 2001.
[30]Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Ren,“Growth of aligned carbon nanotubes with controlled site density,”Appl. Phys. Lett., vol. 80, no. 21, pp. 4018-4020, 2002.
[31]S. Iijima,“Helical microtubules of graphitic carbon,”Nature, vol. 354, pp. 56-58, 1991.
[32]T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, ”Catalytic growth of single-walled manotubes by laser vaporization,” Chem. Phys. Lett., vol. 243, pp. 49-54, 1995.
[33]D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, ”Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,”Nature, vol. 363, pp. 605-607, 1993.
[34]Y. Li, J. Liu, Y. Wang, and Z. L. Wang, "Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes,” Chem. Mater., vol. 13, pp. 1008-1014, 2001.
[35]G. S. Choi, K. H. Son, and D. J. Kim, “Fabrication of high performance carbon nanotube field emitters,” Microelectron. Eng., vol. 66, pp. 206-212, 2003.
[36]B. J. Landi, R. P. Raffaelle, S. L. Castro, and S. G. Bailey, “Single-wall carbon nanotube-polymer solar cells,”Prog. Photovolt: Res. Appl., vol. 13, pp. 165-172, 2005.
[37]成會明,奈米碳管,2ed. 台北: 五南圖書出版有限公司,2006。
[38]O. k. Varghese and C. A. Grimes,“Metal oxide nanoarchitectures for environmental sensing,”J. Nanosci. Nanotechnol., vol. 3, pp. 277-293, 2003.
[39]A. Fujishima, T. N. Rao, and D. A Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol., C, vol. 1, pp. 1-21, 2000.
[40]B. O'Regan and M. Gr?鱸zel,“A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,”Nature, vol. 353, pp. 737-740, 1991.
[41]M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.-F. Guillemoles, and J.-P. Jolivet,“Electrochemical comparative study of titania (Anatase, brookite and rutile) nanoparticles synthesized in aqueous medium,”Thin Solid Films, vol. 451-452, pp. 86-92, 2004.
[42]K. Okimura,“Low temperature growth of rutile TiO2 films in modified RF magnetron sputtering”, Surf. Coat. Technol., vol. 135, pp. 286-290, 2001.
[43]V. Samy and L. S. Dubrovinsky,“Bulk modulus of Anatase”, J. Phys. Chem. Solids, vol. 62, pp. 673-675, 2001.
[44]J. C. Parker and R. W. Siegel,“Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes,”J. Mater. Res., Vol. 5, No. 6, pp. 1246-1252, 1990.
[45]A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, ”Lithium-Ion Intercalation in to TiO2-B Nanowires,”Adv. Mater., vol. 17, pp. 862-865, 2005.
[46]N.-G. Park, J. van de Lagemaat, and A. J. Frank,“Comparison of Dye-sensitized rutile and anatase based TiO2 solar cells,”J. Phys. Chem. B, vol. 104, pp. 8989-8994, 2000.
[47]S.-L. Kim, S.-R. Jang, R. Vittal, J. Lee, and K.-J. Kim,“Rutile TiO2-modified multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells,”J. Appl. Electrochem., vol. 36, pp 1433-1439, 2006.
[48] M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.-F. Guillemoles, and J.-P. Jolivet,“Electrochemical comparative study of titania (anatase, brookite and rutile),”Thin Solid Films, vol. 451, pp. 86-92, 2004.
[49]W. S. Bacsa, D. Ugarte, A. Chĝtelain, and W. A. de Heer,“High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes,”Phys. Rev. B, vol. 50, pp. 15473-15476, 1994.
[50]J. Liberaa and Y. Gogotsi,“Hydrothermal synthesis of graphite tubes using Ni catalyst,”Carbon, vol. 39, pp.1307-1318, 2001.
[51]H. Berger, H. Tang, and F. L?臀y,“Growth and Raman spectroscopic characterization of TiO2 anatase single crystals,”J. Cryst. Growth, vol. 130, pp. 108-112, 1993.
[52]Y.-S. Huang, S.-S. Lin, C.-R. Huang, M.-C. Lee, T.-E. Dann, and F.-Z. Chien,“Raman spectrum of IrO¬2,”Solid State Commun., vol. 70, pp. 517-522, 1989.
[53]N.-G. Park, J. van de Lagemaat, and A. J. Frank,“Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,”J. Phys. Chem. B, vol. 104, pp. 8989-8994, 2000.
[54] R. Jose, V. Thavasi, and S. Ramakrishna,“Metal oxides for Dye-sensitized solar cells,”J. Am. Ceram. Soc., vol. 92, pp. 289-301, 2009.
[55]N.-G. Park, G. Schlichth?宁l, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank,“Dye-sensitizded TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,”J. Phys. Chem. B, vol. 103, pp. 3308-3314, 1999.
[56]X. Wu, L. Wang, and Y. Qiu,“In situ synthesis of mesoporous TiO2 anatase films and their photovoltaic performance in dye sensitized solar cells,”Jpn. J. Appl. Phys., vol. 45, pp. 1149-1151, 2006.
[57]J. Weidmann, Th. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, and F. Koch,“Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cells, Sol. Energy Mater. Sol. Cells, vol. 56, pp. 153-165, 1999.
[58]P. M. Kumar, S. Badrinarayanan, and M. Sastry,“Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,”Thin Solid Films, vol. 358, pp. 122-130, 2000.
[59]M. Yoon, M. Seo, C. Jeong, J. H. Jang, and K. S. Jeon, “Synthesis of liposome- templated titania nanodisks: optical properties and photocatalytic activities,” Chem. Mater., vol. 17, pp. 6069-6079, 2005.
[60]D. Noguchi, Y. Kawamata, and T. Nagatomo,“Relationship between the photocatalytic characteristics and the oxygen partial pressure of TiO2 thin films prepared by a DC reactive sputtering method,”Jpn. J. Appl. Phys., vol. 43, pp. 1581-1585, 2004.
[61]K.-H. Park, and M. Dhayal,“High efficiency solar cell based on dye sensitized plasma treated nano-structured TiO2 films,”Electrochem. Commun., vol. 11, pp. 75-79, 2009.
[62]J. Xia, N. Masaki, K. Jiang, and S. Yanagida,“Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells,” J. Phys. Chem. B, vol. 110, pp. 25222-25228, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊