|
References
[1]Y. S. Choi, “Shapes of emitter surface in field emission display,” Thin Solid Films, vol. 516, pp. 3357-3363, 2008. [2]J.-L. Kwo, M. Yokoyama, and I.-N. Lin, “Effects of composition on field emission character of tetrahedral amorphous carbon,” Appl. Surf. Sci., vol. 142, pp. 521-526, 1999. [3]H. Takiguchi, “Technology-development trend of liquid crystal display,” Shapu Giho/Sharp Technical J., vol. 74, pp. 5-11, 1999. [4]T. Oguchi, E. Yamaguchi, K. Sasaki, K. Suzuki, and S. Uzawa, “A 36-inch surface-conduction electron-emitter display (SED),” J. SID., vol. 36, pp. 1929-1931, 2005. [5]K. Yamamoto, I. Nomura, K. Yamazaki, and S. Uzawa, “Fabrication and characterization of surface conduction electron emitters,” J. SID., vol. 36, pp. 1933-1935, 2005. [6]S. Reich, C. Thomsen, and J. Maultzsch, “Carbon nanotubes: basic concepts and physical properties,” Germany: Wiley-VCH, 2004. [7]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991. [8]S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, 1993. [9]D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, pp. 605-607, 1993. [10]A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, pp. 483-487, 1996. [11]G. S. Choi, K. H. Son, and D. J. Kim, “Fabrication of high performance carbon nanotube field emitters,” Microelectron. Eng., vol. 66, pp. 206-212, 2003. [12]P. R. Somani, S. P. Somani, S.P. Lau, E. Flahaut, M. Tanemura, and M. Umeno, “Field electron emission of double walled carbon nanotube film prepared by drop casting method,” Solid State Electron., vol. 51, pp. 788-792, 2007. [13]Y. Qin, M. Hu, H. Li, Z. Zhang, and Q. Zou, “Preparation and field emission properties of carbon nanotubes cold cathode using melting Ag nano-particles as binder,” Appl. Surf. Sci., vol. 253, pp. 4021-4024, 2008. [14]J. W. Mintmire and C. T. White, “Electronic and structural properties of carbon nanotubes,” Carbon, vol. 33, pp. 893-902, 1995. [15]W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V. Thien Binh, and O. Groening, “Carbon nanotubes as field emission sources,” J. Mater. Chem., vol. 14, pp. 933 – 943, 2004. [16]A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou, S. G. Kim, and D. Tománek, “Unraveling nanotubes: Field emission from an atomic wire,” Science, vol. 269, no. 5230, pp. 1550-1553, 1995. [17]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, and A. M. Cassell, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, no. 5401, pp. 512-514, 1999. [18]H. Huang, C. H. Liu, Y. Wu, and S. Fan, “Aligned carbon nanotube composite films for thermal management,” Adv. Mater., vol. 17, pp. 1652-1656, 2005. [19]G. Fursey, I. Brodie, and P. Shwoebel, “Field emission in vacuum microelectronics,” US: Kluwer Academic Pub, 2005. [20]R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A, vol. 119, pp. 173-181, 1928. [21]C.A. Spindt, “A thin‐film field‐emission cathode,” J. Appl. Phys., vol. 39, pp. 3504-3505, 1968. [22]S. Albin, W. Fu, A. Varghese, and A.C. Lavarias, “Diamond coated silicon field emitter array,” J. Vac. Sci. Technol. A, vol. 17, pp. 2104-2108, 1999. [23]N. S. Xu and R. V. Latham, “Similarities in the cold electron emission characteristics of diamond coated molybdenum electrodes and polished bulk graphite surfaces,” J. Phys. D, vol. 26, pp. 1776-1780, 1993. [24]M. Q. Ding, D. M. Gruen, A. R. Krauss, O. Auciello, T. D. Corrgan, and R. P. H. Chang, “Studies of field emission from bias-grown diamond thin films,” J. Vac. Sci. Technol. B, vol.17, pp. 705-709, 1999. [25]S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, “Field-emission studies on thin films of zinc oxide nanowires,” Appl. Phys. Lett., vol. 83, pp. 4821-4823, 2003. [26]K. A. Dean, P. von Allmen, and B. R. Chalamala, “Three behavioral states observed in field emission from single-walled carbon nanotubes,” J. Vac. Sci. Technol. B, vol. 17, pp. 1959-1969, 1999. [27]H. Gao, C. Mu, F. Wang, D. Xu, K. Wu, Y. Xie, S. Liu, E. Wang, J. Xu, and D. Yu, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template,” J. Appl. Phys., vol. 93, pp. 5602-5605, 2003. [28]B. Q. Zeng, G. Y. Xiong, S. Chen, W. Z. Wang, D. Z. Wang, and Z. F. Ren, “Enhancement of field emission of aligned carbon nanotubes by thermal oxidation,” Appl. Phys. Lett., vol. 89, pp. 223119, 2006. [29]F. Lu, W. P. Cai, Y. G. Zhang, Y. Li, and F. Sun, “Fabrication and field-emission performance of zinc sulfide nanobelt arrays,” J. Phys. Chem. C, vol. 111, pp. 13385-13392, 2007. [30]J. Chen, S. Z. Deng, N. S. Xu, W. X. Zhang, X. G. Wen, and S. H. Yang, “Temperature dependence of field emission from cupric oxide nanobelt films,” Appl. Phys. Lett., vol. 83, pp. 746-748, 2003. [31]Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “Field emission from MoO3 nanobelts,” Appl. Phys. Lett., vol.81, pp. 5048-5050, 2002. [32]C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett., vol. 81, pp. 3648-3650, 2002. [33]J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Zhong, “Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties,” Adv. Mater., vol. 15, pp. 1835-1840, 2003. [34]J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, and J. C. She, “Synthesis of large-scaled MoO2 nanowire arrays,” Chem. Phys. Lett., vol. 382, pp. 443-446, 2003. [35]J. Zhou, S. Z. Deng, N. S. Xu, J. Chen, and J. C. She, “Synthesis and field-emission properties of aligned MoO3 nanowires,” Appl. Phys. Lett., vol. 83, pp. 2653-2655, 2003. [36]H. Seiler, “Secondary electron emission in the scanning electron microscope,” J. Appl. Phys., vol. 54, pp. R1-R18, 1983. [37]J. J. Scholtz, D. Dijkkamp, and R. W. A. Schmitz, “Secondary electron emission properties,” Philips J. Res., vol. 50, pp. 374-389, 1996. [38]J. Pillon, D. Roptin, and M. Cailler, “Secondary electron emission from aluminum,” Surf. Sci., vol. 59, pp. 741-748, 1976. [39]K. Kanaya, S. Ono, and F. Ishigaki. “Secondary electron emission from insulators,” J. Phys. D, vol. 11, pp. 2425-2437, 1978. [40]W. K. Yi, T. W. Jeong, S. G. Yu, J. N. Heo, C. S. Lee, J. H. Lee, W. S. Kim, J.-B. Yoo, and J. M. Kim, “Field-emission characteristics from wide-bandgap material-coated carbon nanotubes,” Adv. Mater., vol. 14, pp. 1464-1468, 2002. [41]W. Yi, S. Yu, W. Lee, I. T. Han, T. Jeong, Y. Woo, J. Lee, S. Jin, W. Choi, J. Heo, D. Jeon, and J. M. Kim, “Secondary electron emission yields from MgO deposited on carbon nanotubes,” J. Appl. Phys., vol. 89, pp. 4091-4095, 2001. [42]J. N. Heo, W. S. Kim, T. W. Jeong, S. Yu, J. H. Lee, C. S. Lee, W. K. Yi, Y. H. Lee, J. B. Yoo, and J. M. Kim, “Effect of MgO film thickness on secondary electron emission from MgO-coated carbon nanotubes,” Phys. B, vol. 323, pp. 174-176, 2002. [43]W. S. Kim, W. Yi, S. Yu, J. Heo, T. Jeong, J. Lee, C. S. Lee, J. M. Kim, H. J. Jeong, Y. M. Shin, and Y. H. Lee, “Secondary electron emission from magnesium oxide on multiwalled carbon nanotubes,” Appl. Phys. Lett., vol. 81, pp. 1098-1100, 2002. [44]J. Lee, J. Park, J. Kim, and W. Yi, “Effect of double layer coating on carbon nanotubes for field emission and secondary electron emission measurement,” J. Vac. Sci. Technol. B, vol. 25, pp. 570-574, 2007. [45]Z.-N. Yu, J.-W. Seo, D.-X. Zheng, and J. Sun, “Structural and discharging properties of MgO thin films prepared by ion beam-assisted deposition,” Surf. Coat. Technol., vol. 163-164, pp. 398-404, 2003. [46]Y. Yan, L. Zhou, and Y. Zhang, “Synthesis of MgO hierarchical nanostructures controlled by the supersaturation ratio,” J. Phys. Chem. C, vol. 112, pp. 19831-19835, 2008. [47]T. V. Sreekumar, T. Liu, and S. Kumar, ” Single-wall carbon nanotube films,” Chem. Mater., vol. 15, pp. 175-178, 2003. [48]D. K. Aswal, K. P. Muthe, S. Tawde, S. Chodhury, N. Bagkar, A. Singh, S. K. Gupta, and J. V. Yakhimi, “XPS and AFM investigations of annealing induced surface modifications of MgO single crystals,” J. Cryst. Growth, vol. 236, pp. 661-666, 2002. [49]H. B. Yao, Y. Li, and A. T. S. Wee, “An XPS investigation of the oxidationrcorrosion of melt-spun Mg,” Appl. Surf. Sci., vol. 158, pp. 112-119, 2000. [50]D. Caceres, I. Colera, I. Vergara, R. Gonzalez, and E. Roman, “Characterization of MgO thin films grown by rf-sputtering,” Vacuum, vol. 67, pp. 577-581, 2002. [51]P. Casey, E. OConnor, R. Long, B. Brennan, S.A. Krasnikov, D. OConnell, P. K. Hurley, and G. Hughes, “Growth, ambient stability and electrical characterisation of MgO thin films on silicon surfaces,” Microelectron. Eng., vol. 86, pp. 1711-1714, 2009. [52]C. Xu and D. W. Goodman, “Structure and geometry of water adsorbed on the MgO(100) surface,” Chem. Phys. Lett., vol. 265, pp. 341-346, 1997. [53]S. H. Moon, T. W. Heo, S. Y. Park, J. H. Kim, and H. J. Kim, “The effect of the dehydration of MgO films on their XPS spectra and electrical properties,” J. Electrochem. Soc., vol. 154, pp. J408-J412, 2007. [54]J. Lee, T. Jeong, S. Yu, S. Jin, J. Heo, W. Yi, D. Jeon, and J. M. Kim, “Thickness effect on secondary electron emission of MgO layers,” Appl. Surf. Sci., vol. 174, pp.62-69, 2001.
|