|
[1] S.Y. Chien, S.Y. Ma, Liang-Gee Chen, “Efficient Moving Object Segmentation Algorithm Using Background Registration Technique,” IEEE Transaction on Circuits and System for Video Technology, Vol. 12, No. 7, pp.577-586, 2002. [2] A.J. Lipton, H. Fujiyoshi, R.S. Patil, “Movin Target Classification and Tracking from Real-time Video,” Proc. IEEE Workshop Applications of Computer Vision, pp.8-14, 1998. [3] F.E. Alsaqre, Y. Baozong, “Moving Object Segmentation for Video Surveillance and Conferencing Applications,” Proceedings International Conference on Communication Technology (ICCT, 2003), Vol. 2, pp.1856-1859, 2003. [4] J. I Agbinya, D. Rees, “Multi-Object Tracking in Video, ” Real-Time Image 5, pp. 295-304, 1999. [5] S.T. Birchfield, S. Rangarajan, “Spatiograms Versus Histograms for Region-Based Tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 2, pp. 1158-1163, 2005. [6] F. Porikli, O. Tuzel, P. Meer, “Covariance Tracking using Model Update Based on Lie Algebra,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp.728-735, 2006. [7] R. Polana, R. Nelson, “Low Level Recognition of Human Motion,” IEEE Workshop Motion of Non-Rigid and Articulated Objects, pp. 77-82, 1994. [8] D.S. Jang, H.I. Choi, “Active models for tracking moving objects,” Pattern Recognition, Vol. 33, pp. 1135-1146, 2000. [9] S.K. Weng, C.M. Kuo, S.K. Tu, “Video Object Tracking using Adaptive Kalman Filter,” Journal of Visual Communication and Image Representation, Vol. 17, pp. 1190-1208, 2006. [10] R.L. Hsu, A.M. Mohamed, A.K. Jain, “Face Detection in Color Images,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 24, No.5, pp. 696-706, 2002. [11] J. Han, M. Feng, P.H.N. de With, “A Real-Time Video Surveillance System with Human Occlusion Handling using Nonlinear Regression,” IEEE International Conference on Multimedia and Expo, pp. 335-340, 2008. [12] M. Mason, Z. Duric, “Using Histograms to Detect and Track Objects in Color Video,” Proceedings of Applied Imagery Pattern Recognition, pp. 154–162, 2001. [13] J.S. Hu, C.W. Juan, J.J. Wang, “A Spatial-Color Mean-Shift Object Tracking Algorithm with Scale and Orientation Estimation,” Pattern Recognition Letters, Vol. 29, pp. 2165-2173, 2008. [14] D. Comaniciu, V. Ramesh, P. Meer, “Real-Time Tracking of Non-Rigid Objects using Mean Shift,” IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 241-219, 2000. [15] T. L. Hwang, J. J. Clark, “On Local Detection of Moving Edge,” Proceedings of IEEE International Conference on Pattern Recognition, Vol. 1, pp. 180-184, 1990. [16] H. Liu, Z. Yu, H. Zha, Y. Zou, L. Zhang, “Robust Human Tracking Based on Multi-Cue Integration and Mean-Shift,” Pattern Recognition Letters, Vol. 30, pp. 827–837, 2008. [17] C. Chang, R. Ansari, “Kernel Particle Filter for Visual Tracking,” IEEE Signal Processing Letters, Vol. 12, No. 3, 2005. [18] K. Nummiaro, E. Koller-Meier, L. V. Gool, “An Adaptive Color-Based Particle Filter,” Image and Vision Computing, Vol. 21, pp. 99-110, 2003. [19] R.Q. Chen, Z.H. Zhang, H.Q. Lu, H.Q. Cui, Y.K. Yan, “Particle Filter Based Object Tracking with Color and Texture Information Fusion,” Proceedings of SPIE, Vol. 7495, pp. 74952F, 2009. [20] M.Z. Islam, C.M. Oh, C.W. Lee, “Real Time Moving Object Tracking by Particle Filter,” Proceedings of the International Symposium on Computer Science and its Applications, pp. 347-352, 2008. [21] K. Hotta, “Adaptive Weighting of Local Classifiers by Particle Filters for Robust Tracking,” Pattern Recognition, Vol. 42, pp. 619-628, 2009. [22] J. Wang, Y. Yagi, “Adaptive Mean-Shift Tracking with Auxiliary Particles,” IEEE Transaction on Systems, MAN, and Cybernetics, pp.1578-1589, 2009. [23] C. Shan, T. Tan,Y. Wei, “Real-time Hand Tracking using a Mean Shift Embedded Particle Filter,” Pattern Recognition, Vol. 40, pp.1958-1970, 2007. [24] D. Comaniciu, V. Ramesh, “Mean Shift and Optimal Prediction for Efficient Object Tracking,” IEEE International Conference on Image Processing, pp. 70-73, 2000. [25] A. Yao, G. Wang, X. Lin, X. Chai, “An Incremental Bhattacharyya Dissimilarity Measure for Particle Filtering,” Pattern Recognition, Vol. 43, pp. 1244-1256, 2010. [26] T. Ojala, M. Pietikainen, T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, pp. 971-987, 2002. [27] T. Ojala, M. Pietikainen, Z. XU, “Rotation-Invariant Texture Classification using Feature Distributions,“ Pattern Recognition 33, Vol. 33, pp. 43-52, 2000. [28] T. Maenpaa, “The Local Binary Pattern Approach to Texture Analysis – Extensions and Applications,” Ph.D. Dissertation, University of Oulu, 2003. [29] W. Zhang, S. Shan, W. Gao, X. Chen, H. Zhang, “ Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel Non-Statistical Model for Face Representation and Recognition,” Tenth IEEE International Conference on Computer Vision (ICCV'05), Vol. 1, pp. 786-791, 2005. [30] I.S. Hsieh, K.C. Fan, “An Adaptive Clustering Algorithm for Color Quantization,” Pattern Recognition 21, Vol. 21, pp. 337-346, 2000. [31] M.J. Swain, B.H. Ballard, “Color Indexing” , Int'l J. Computer Vision, Vol. 7, No. 1, pp. 11-32, 1991. [32] D.W. Scott, Multivariate Density Estimation, New York: Wiley, pp. 24-26, 1992.
|