(3.236.100.6) 您好!臺灣時間:2021/04/24 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝榮洲
研究生(外文):Rong-Jhou Shie
論文名稱:縮尺建築模型之通風研究
論文名稱(外文):A study on ventilation of a reduced-scale building model
指導教授:林怡均林怡均引用關係
指導教授(外文):Yi-Jiun Peter Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:125
中文關鍵詞:浮力通風機械通風太陽煙囪縮尺建築模型
外文關鍵詞:Buoyancy ventilationMechanical ventilationSolar chimneyReduced-scale building model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:220
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:2
此論文探討一棟7層樓縮尺建築模型之通風量研究,建築模型為$\frac{1}{50}$~縮尺模型。
實驗工作項目分為浮力通風及機械通風,
浮力通風系列將可變強度的熱源模組放置在太陽煙囪內不同高度,利用溫差浮力驅動通風;
機械通風系列為選擇安裝一個、二個或三個風扇於建築模型入口處、太陽煙囪中間位置及出口處,使用機械能強制通風;
以及最後組合機械通風與浮力通風機制。
以上實驗系列皆量測壓力、溫度及速度等參數的變化,觀察在不同機制下,建築環境的通風情形。
浮力通風研究結果顯示,熱源模組放置的高度及熱源的強度皆會影響建築模型的通風量。
當熱源模組放置於太陽煙囪最低處時,在建築模型的出口處有最大的壓力差及最大的通風量。
熱源的強度與通風量呈現線性正比的關係。
機械通風實驗結果顯示,使用單一風扇機制中,安裝入口風扇對於增加建築環境通風效果不是很明顯,通風量為最低;
其次的通風量是安裝中間風扇,但是在太陽煙囪內部量測得實驗數據皆偏低;
安裝出口風扇能夠最有效率地提昇建築環境的通風量。
當使用兩個風扇時,實驗結果顯示,安裝開啟入口風扇的實驗組別,建築環境通風量較低,當搭配組合中間風扇或出口風扇時,建築環境通風量會較明顯地提升;
當同時開啟兩個風扇時,開啟入口及中間風扇有最小的通風量;
選擇在太陽煙囪中間處及出口處開啟風扇,能使建築環境有最大的通風量。
在使用三個風扇時,與開啟一個及兩個風扇的實驗結果比較,加裝風扇,但是沒有啟動時,對於建築環境通風有阻礙的影響,
其中,中間風扇對於建築環境的通風阻礙影響最大;
三個風扇全部開啟為此實驗系列最大通風量的條件。
浮力通風與機械通風的組合實驗結果顯示,開啟入口風扇對於不同高度的熱源有不同的通風效果,
在太陽煙囪較高位置放置熱源能使入口風扇有較大的通風量。
This thesis presents experimental results of a building model of a reduced-scale of 50 to the real building. This research is conducting three series of experiments on buoyancy ventilation, mechanical ventilation and combination of buoyancy-mechanical ventilation. Pressure difference, temperature and velocity were measured at several specific locations inside and outside the model for each experiment run. For buoyancy ventilation experiments, the heat source level and the power strength of the heat source are varied to observe the change of ventilation. In this experimental series, when the heat source level is located at the lowest position inside the solar chimney, there is the maximum flow rate.
This arrangement of the heat source level gives the largest pressure difference between the inside and the outside of the outlet opening of the solar chimney.
The flow rate is also proportional to the strength of heat source power.
For mechanical ventilation experimental series, experimental runs of either single, two or three fans at the inlet, in the middle and at the outlet of the building model are conducted. The single-fan mechanical ventilation cases show that the lowest ventilation rate occurs when the fan is installed at the entrance of the solar chimney. When the fan is installed in the middle of the solar chimney, the ventilation rate would rise. The highest ventilation rate, however, is obtained when the outlet fan installed. In two-fan mechanical ventilation cases, experimental results show that the entrance fan does not have significant effect on ventilation rate, but the middle and the outlet fans have more influence on it.
When the two fans are turn on simultaneously, the case of the inlet and the middle fans has the lowest ventilation rate and the case of the middle and the outlet fans has the highest ventilation rate.
Compared to single-fan and two-fan cases, three-fan cases show that the extra fan without power would gives the resistance for ventilation rate.
The effect of the middle fan is the most dominant.
The last experimental series combine both the buoyancy ventilation and mechanical ventilation. For experiments of combination of buoyancy-driven and mechanical ventilation, one mechanical fan is used outside the inlet of the building model. Experiments of combination ventilation show that mechanical fan in this experimental arrangement does not have the same effect on increases of ventilation efficiency for different heat source level.
When the heat source is positioned at the highest level, the mechanical fan has its best efficiency.
1 序論
1.1 研究動機與目的
1.2 文獻回顧
1.3 論文架構
2 實驗方法
2.1 實驗建築模型
2.2 實驗組件
2.2.1 熱源模組
2.2.2 機械風扇
2.3 量測儀器
2.3.1 風速計 (Anemometer)
2.3.2 壓力感測計 (Pressure transducer)
2.3.3 溫度感測計 (Temperature sensor)
2.3.4 資料擷取器 (Data logger)
2.4 實驗參數及系統
2.4.1 浮力通風系列
2.4.2 機械通風系列
2.4.3 浮力通風與機械通風系列組合
2.5 實驗測量資料變異量
2.6 實驗步驟
2.6.1 實驗前儀器設置
2.6.2 實驗程序
3 實驗結果與比較
3.1 通風量估算方式
3.2 浮力通風系列
3.2.1 熱源模組置於太陽煙囪 53 cm處
3.2.2 熱源模組置於太陽煙囪 35 cm處
3.2.3 熱源模組置於太陽煙囪 13 cm處
3.2.4 小結
3.3 機械通風系列
3.3.1 機械通風 A 實驗: 單一風扇
3.3.2 機械通風 B 實驗: 兩個風扇
3.3.3 機械通風 C 實驗: 三個風扇
3.3.4 小結
3.4 浮力通風與機械通風組合系列
4 結論與建議
4.1 結論
4.2 建議
R. Letan, V. Dubovsky, G. Ziskind,
Passive ventilation and heating by natural convection in a multi-storey building,
Building and Environment, 2003; 38: 197-208.

W. Ding, Y. Hasemi, T. Yamada,
Natural ventilation performance of a double-skin facade with a solar chimney,
Energy and Buildings, 2005; 37: 411-418.

W. Ding, Y. Mindgishi, Y. Hasemi, T. Yamada,
Smoke control based on a solar-assisted natural ventilation system,
Building and Environment, 2004; 39: 775-782.

S. Punyasompun, J. Hirunlabh, J. Khedari, B. Zeghmati,
Investigation on the application of solar chimney for multi-storey buildings,
Renewable Energy, 2009; 34: 2545-2561.

陳彥志, 室外風場對風壓通風影響之實驗研究, 中央大學, 2007

L. Xu, T. Ojima,
Field experiments on natural energy utilization in a residential housewith a double skin facade system,
Building and Environment, 2007; 42: 2014-2023.

J. Mathur, N.K. Bansal, S. Mathur, M. Jain, Anupma,
Experimental investigations on solar chimney for room ventilation,
Building and Environment, 2006; 80: 927-935.

V. Dubovsky, G. Ziskind, S. Druckman, E. Moshka, Y. Weiss, R. Letan,
Natural convection inside ventilated enclosure heated by downward-facing: experiments and numerical simulations,
HEAT and MASS TRANSFER, 2001; 44: 3155-3168.

G. Ziskind, V. Dubovsky, R. Letan,
Ventilation by natural convection of a one-story building,
Building and Environment, 2002; 34: 91-102.



Z.D. Chen, P. Bandopadhayay, J. Halldorsson, C. Byrjalsen, P. Heiselberg, Y. Li,
An experimental investigation of a solar chimney model with uniform wall heat flux,
Building and Environment, 2003; 38: 893-906.

Q. Chen,
Ventilation performance prediction for buildings: A method overview and recent applications,
Building and Environment, 2009; 44: 848-858.

賴柏洲, 基本電學,
全華圖書股份有限公司 印行, 2007.

朱佳仁, 風工程概論,
科技圖書出版公司 印行, 2006.

P.F. Linden,
The Fluid Mechanics of Natural Ventilation,
Annual Review of Fluid Mechanics, 1999; 31: 201-238.

R.W. Fox, A.T. Mcdonald, P.J. Pritchard,
Introduction to Fluid Mechanics,
JOHN WILEY & SONS, INC, 2003; ISBN 0-471-20231-2.

Y.A. Cengel, M.A. Boles,
Thermodynamics an engineering approach,
McGraw-Hill, 2007; ISBN 978-007-125771-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔