跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/13 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張明智
研究生(外文):Ming-chih Chang
論文名稱:新型致動系統應用於無閥角錐式流道微幫浦之研發
論文名稱(外文):Development of Valveless Pyramidal Micropump with using New Actuation System
指導教授:鄭逸琳
指導教授(外文):Yih-lin Cheng
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:117
中文關鍵詞:無閥式微幫浦角錐式擴散器SDM技術
外文關鍵詞:valveless micropumppyramidal diffuserShape Deposition Manufacturing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前國內外對於微幫浦的相關研究大多數是以壓電片作為致動系統,所以本實驗室在先前研究裡也是採用此種致動器,然而經由先前的實驗結果發現壓電致動器具有高驅動電壓、振幅過小以及能量損耗大等問題。此外,無閥式微幫浦入口流道的逆流問題也會影響微幫浦的性能。因此,本研究發展一種新型的致動系統用來取代壓電致動器,並且利用在腔室內部設計固定止回閥體來減少回流的情況。SDM (Shape Deposition Manufacturing)製程為一種層加工技術 ,利用來製作微幫浦流道與腔室特徵。
利用小型DC馬達作為新型的致動系統,透過傳動組件將馬達的旋轉運動轉換成往復式運動來改變腔室體積的變化。新型致動系統的振動情形相似於壓電致動器,但其振動幅度較大,頻率低,所需驅動電壓可從50V降至9V。這種新型的致動系統證實了能夠利用在先前研究的角錐式無閥微幫浦上,也能應用於文獻上的平壁式微幫浦。流量測試結果得出擴散角20°、傾斜角20°之微幫浦在頻率60Hz下,最大流量可達4283.99μl/min。此外,兩個固定止回閥體的設計,以減少回流的影響進行研究,其結果在設計一的閥體可增加約三分之一的流量。
Most researches in valveless micropump utilized piezoelectric actuators, so did previous studies in our laboratory. However, the piezoelectric actuator has problems of high driving voltage, too small amplitude, and large energy consumption. Besides, the existence of back flow of the valveless micropump affects micropump’s performance. Therefore, this research developed a new actuation system to replace piezoelectric actuator, and designed fixed valves in the chamber of the micropump to reduce back flow situations. SDM (Shape Deposition Manufacturing) process, a layered manufacturing technique, was used to fabricate micropump channels and the chamber.
A miniature DC motor was used in the new actuation system. Through a transmission mechanism, the rotational movement of the motor became reciprocating motion to increase and decrease chamber’s volume in each cycle. The result of this new actuation system was similar to the vibration of piezoelectric actuator, but the amplitude was higher, the frequency was lower, and the required voltage was only 9V instead of 50V. This new actuation system was proved to be able to actuate our previous valveless pyramidal diffuser micropump designs and flat-walled diffuser pump in the literatures. The maximum flow rate of the pyramidal micropump with diffuser angle of 20 degrees and inlet slant angle of 20 degrees was 4283.99μl/min at 60Hz. Moreover, two fixed valve designs to reduce back flow effects were investigated. As a result, the design 1 could increase about one-third of the flow rate.
摘要I
AbstractII
致謝III
目錄IV
圖目錄VII
表目錄XIV
符號表XVI
第一章 緒論1
1-1 前言1
1-2 研究目的與方法 2
1-3小型DC馬達致動微幫浦之設計概念4
1-4 論文架構5
1-5 微幫浦之類型介紹6
1-5-1 微幫浦簡介6
1-5-2 微閥門之探討6
1-5-2-1 有閥式6
1-5-2-2 無閥式8
1-5-3 致動器之探討9
1-6 文獻回顧14
第二章 相關理論21
2-1 無閥式微幫浦基本原理21
2-2 擴散器/噴嘴之設計22
第三章 新型致動系統29
3-1 新型致動器之設計30
3-2 小型直流伺服馬達的選用33
3-3 直流馬達轉速控制方式34
3-4 致動系統硬體架構35
3-4-1 微控制器36
3-4-2 直流馬達驅動器37
3-4-3 程式撰寫39
第四章 微幫浦之設計與製作42
4-1 微幫浦之設計42
4-1-1 先前研究之設計42
4-1-2 固定閥體之設計45
4-1-3 平壁式微幫浦之設計47
4-2 SDM製程48
4-2-1 SDM加工原理48
4-2-2 切層規劃分析說明49
4-2-3 材料與設備50
4-2-3-1 SDM建構材料50
4-2-3-2 SDM製程設備與製作軟體54
4-3 微幫浦之製作61
4-3-1 角錐無閥式微幫浦之製作62
4-3-2 水平平壁式微幫浦之製作70
4-3-3 垂直平壁式微幫浦之製作75
4-3-4 移除支撐材料 80
4-4 微幫浦實際尺寸量測81
4-5 PDMS薄膜與致動器傳動組件之製作87
4-5-1 PDMS薄膜材料87
4-5-2 PDMS薄膜製作88
4-5-3 PDMS薄膜有限元素分析89
4-6 致動器傳動組件之製作91
第五章 微幫浦封裝與測試94
5-1 微幫浦封裝94
5-1-1 腔室封裝94
5-1-2 量測水管與微幫浦之封裝95
5-2 量測系統架構96
5-3 實驗操作流程97
5-4 微幫浦量測結果99
5-4-1 各類型微幫浦流量與背壓量測結果100
5-4-2 綜合比較108
5-4-3 各類型微幫浦之雷諾數110
5-5 實驗結果與相關文獻比較111
第六章 結論與未來展望116
6-1 結論116
6-2 未來展望117
參考文獻118
附錄1 先前研究之流量數據123
附錄2 FC52 Isocyanate/Polyol材料性質表126
附錄3 BIOACT 280材料性質表128
附錄4 角錐式流道壓力恢復係數(Cp)值實際推算133
【1】林建宏, "無閥式微幫浦於水下載具應用之研發" ,國立台灣科技大學, 碩士學位論文, 2005。
【2】石禮榮, "3D無閥式微幫浦研發" ,國立台灣科技大學, 碩士學位論文, 2006。
【3】曾加宏, "壓電無閥角錐式流道微幫浦之研發", 國立台灣科技大學, 碩士學位論文, 2006。
【4】A. Huff, R. Gilbert, "Flow Characteristics of a Pressure-Balanced Microvalve," Sensor and Actuators, 1993.
【5】A. Doll, M. Wischke, "Characterization of active silicon microvalves with piezoelectric membrane actuators," Microelectronic Engineering, Vol.84, PP.1202-1206.
【6】R. Zengerle, J. Ulrich, "A bidirectional silicon micropump," Sensor and Actuators A, Vol.50, PP.81-86, 1995.
【7】A. Olsson, G. Stemme, "Simulation Studies of Diffuser and Nozzle Elements," IEEE, PP.1039-1042, 1997.
【8】N. Tesla "Valvular conduit," United States Patent US1, pp.329, pp.599, Feb. 3, 1920.
【9】廖鵬飛, "微管道流無動件閥(NWPV)之研究", 國立成功大學, 碩士學位論文, 2004。
【10】楊愷祥, "壓電無閥式微幫浦之製造與量測分析",國立雲林科技大學, 博士學位論文, 2004。
【11】吳朗, "電子陶瓷—壓電", 全欣科技圖書, 1993。
【12】Helene Andersson, Wouter van der Wijngaart, "A valve-less diffuser micropump for microfluidic analytical systems," Sensor and Actuators B, Vol.72, PP.259-265, 2001.
【13】Jaesung Jang, Seung S. Lee, "Theoretical and experimental study of MFD(magnetohydrodynamic) micropump," Sensor and Actuators A, Vol.80, PP.84-89, 2000.
【14】C. Yamahata, F. Lacharme, "Glass valveless micropump using electromagnetic actuation," Microelectronic Engineering, Vol.87-89, PP.132-137.
【15】Jin-Ho Kim, Kwang-Ho Na, "A disposable thermopneumatic actuated micropump stacked with PDMS layers and ITO-coated glass," Sensor and Actuators A, Vol.120, PP.365-369, 2005.
【16】Dong Xu, Li Wang, "Characteristics and fabrication of NiTi/Si diaphragm micropump," Sensor and Actuators A, Vol.93, PP.87-92, 2001.
【17】Eiji Makino, Takashi Mitsuya, "TiNi memory shape memory micropump," Sensor and Actuators A, Vol.88, PP.256-262, 2001.
【18】L. Van, H. T. G. and P. V. De, F. C. M.and Bouwstra, "A piezoelectric micropump based on micromachining of silicon," Sensors and actuators A, pp.153-167, 1988.
【19】E. Stemme and G. stemme, "A valveless diffuser/nozzle-based fluid pump," Sensors and Actuators A, Vol.39, pp159-167, 1993.
【20】T. Gerlach, H. Wurmus, "Working principle and performance of the dynamic micropump," Sensors and Actuator A, Vol.50, pp.135-140, 1995.
【21】A. olsson, G. Stemme and E. Stemme, "A valve-less planar fluid pump with two pump chambers," Sensors and Actuators A, Vol.46-47, pp.549-556, 1995.
【22】A. Olsson, P. Enoksson, "A valve-less planar pump in silicon," IEEE, pp.291-294, 1996.
【23】A. Olsson, G. Stemme and E. Stmme, "Micromachined flat-walled valveless diffuser pumps," Journal of Microelectro Mechanical Systems, Vol.6, 1997.
【24】A. Olsson, O. Larsson, J. Holm, L. Lundbladh, O. Ohman, "Valve-less diffuser micropumps fabricated using thermoplastic replication," Sensor and Actuator A, Vol.64, pp.63-68, 1998.
【25】Amos Ullmann, "The piezoelectric valve-less pump—performance enhancement analysis," Sensor and Actuator A, Vol.69, pp.97-105, 1998.
【26】A. olsson, G. Stemme and E. Stemme, "Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps," Sensors and Actuators A, Vol.84, pp.165-175, 2000.
【27】Vishal Singhal, Suresh V. Garimella, "Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps," Sensor and Actuator A, Vol.113, pp.226-235, 2004.
【28】Corey Koch, Vincent Remcho, James Ingle, "PDMS and tubing-based peristaltic micropumps with direct actuation," Sensor and Actuator B, Vol.135, pp.664-670, 2009.
【29】M. Shen, L. Dovat, M.A.M. Gijs, "Magnetic active-valve micropump actuated by a rotating magnetic assembly," Sensor and Actuator B, 2009.
【30】A. Olssen, G. Stemme, E. Stemme, "Micromachined diffuser/nozzle elements for valve-less pumps," IEEE, 1996.
【31】F. M. White, "Fluid Mechanics," McGraw-Hill, New York , pp.334-336, 345-351, 1986.
【32】莊文鴻, "微小型水下機器人之研發", 臺灣科技大學機械工程研究所, 碩士學位論文, 2008。
【33】"BASIC commander and InnoBASIC Workshop使用手冊", 利基應用科技股份有限公司, 2008。
【34】"Motor Runner A單直流馬達控制模組", 利基應用科技股份有限公司, 2008。
【35】"IG-16GM直流馬達", 祥儀企業股份有限公司公司, 2006。
【36】R. Merz, F. Prink, K. Ramaswami, K. Terk, and L. Weiss, "Shape deposition manufacturing," Proceedings of the Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, Texas, pp.1-8, 1994.
【37】Carnegie Mellon's, The Robotics Institute
(http://www.cs.cmu.edu/~sdm/)
【38】張瑞東, "具觀測能力的無線遙控微小水下載具之研發", 國立臺灣科技大學, 碩士學位論文, 2007。
【39】"BIOACT 280 Technical Data Sheet," Petroferm Inc., USA, 2001.
【40】林紋瑞, "評估細胞力學之微陣列力量感測系統研發", 國立成功大學, 碩士學位論文, 2004。
【41】林煒晟, "軟式變焦鏡頭設計與製作", 國立台灣科技大學, 碩士學位論文, 2006。
【42】Ahn, S. H. and Kim, Y. K., "Fabrication and experiment of a planar micro ion drag pump," Sensors and Actuators, 1998.
【43】Tsai, J. and Lin, L., "A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump," Journal of Microelectromechanical Systems, Vol. 11, pp.665-671, 2002.
【44】C. Yamahata, F. Lacharme, Martin A.M. Gijs, " Glass valveless micropump using electromagnetic actuation," MICROELECTRONIC ENGINEERING, Vol.135, pp.664-670, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周淑卿(2008)。豈是「一本」能了?-教科書概念的重建。教科書研究,1(1),29-47。
2. 周淑卿(2004)。教師的課程知識內涵及其對師資培育的意義。課程與教學,7(3),129-142。
3. 林于弘(2009)。國中小國語文教科書的發展與評鑑。教育研究月刊,183,4-17。
4. 周淑卿(2002)。教室層級的課程設計:課程實踐的觀點。教育資料與研究,49,1-7。
5. 李宗薇(1998)。教科書的編輯機制。課程與教學季刊,1(1),41-56。
6. 李坤崇(2008)。九年一貫課程的總綱四次變革及展望。教育研究月刊,175,5-21。
7. 李玉貴(2001)。以「圖畫」「故事」「書」培養閱讀與寫作能力。研習資訊,18(5),5-23。
8. 吳麗君(2007)。教科書在英國學校脈絡下的使用情形及其對臺灣的啟示。國民教育,47(6),5-17。
9. 林于弘、林佳均(2008)。九年一貫國語教科書標點符號教材內容分析比較。教科書研究,1(1),105-121。
10. 洪若烈(2003)。國小教師之教科書使用方式及其影響因素之探討。國教學報,15,175-192。
11. 范信賢(2001)。「文本」:後現代思潮下對「教材」概念的省思。國教學報,13,171-181。
12. 郭玉霞(1996)。教師在課程實施所扮演的角色。國民教育研究集刊,4,53-59。
13. 曾濟群(1990)。日本教科書制度。教育資料文摘,26(4),97-102。
14. 黃永和(1998)。「課程實施」的三種觀點及其對課程改革之啟示。教師之友,39(1),14-21。
15. 黃政傑(2002)。重建教科書的概念與實務。課程與教學季刊,6(1),1-12。