(3.231.166.56) 您好!臺灣時間:2021/03/08 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪銘宏
研究生(外文):Ming-Hung Hung
論文名稱:演化式分類演算法在多核心計算環境下的設計與效率分析
論文名稱(外文):A Study on the Design and Performance Analysis of a New Evolutionary Classification Algorithm in a Multi-Core Computing Environment
指導教授:吳志宏吳志宏引用關係
指導教授(外文):Chih-Hung Wu
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:70
中文關鍵詞:資料探勘機器學習分類演算法演化式計算平行運算多執行緖程式設計
外文關鍵詞:Data MiningMachine LearningClassificationEvaluable ComputingParallel ComputingMulti-threading Programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
分類演算法在面對高維度大量的資料運算,通常會造成運算效率缺乏。因此本研究設計一個解析編碼之演化式分類演算法,演算法具備兩大特色,第一個特色是以解析方格的方式,解析每一個資料空間內的資料,這種方法可以處理資料點分佈複雜的問題;第二個特色為透過演化式反覆計算機制,求得較適合分類模型。為進一步提升解析編碼之演化式分類演算法的運算效率,因此本研究加入多核心程式設計方法,以多核心處理器加速解析編碼之演化式分類演算法的效率。本研究的開發了一般單核心程式的版本,與支援平行化計算的多核心程式版本,並比較單核心版本與多核心版本的效能,及分析各種不同平行化的機制間加速的效果。
This study presents GAREC (genetic algorithms with resolution-encoded chromosome) for classification. GAREC partitions the data space into resolution lattices which are encoded as chromosomes to be processed by genetic algorithms (GA.) A resolution lattice is a decision region of a class which is determined by GA. A lattice containing two or more data points belonging to different classes is considered as a new classification problem to be processed by GAREC iteratively. From the experimental results, GAREC is effective to the classification problems. In order to improve the performance of GAREC, this study implements GAREC on a multi-core computing environment using Open-MP. The performance of single- and multi-core versions of GAREC is evaluated and compared.
第一章 緖論
1.1 研究背景與目的
1.2 研究架構
第二章 文獻探討
2.1 分類演算法
2.2 演化式計算
2.3 平行與分散式處理
2.3.1 平行處理
2.3.2 格網運算
2.4 平行化資料分類
第三章 解析編碼之演化式分類演算法
3.1解析式染色體編碼
3.2 解析編碼之演化式分類演算法
3.3 演化式分類演算法運算元機制
3.3.2 適應函數
3.3.3 挑選機制
3.3.4交配與突變機制
3.3.5重生(Restart)機制
3.6 演算法流程圖及步驟說明
3.7 建立分類模型
3.8 實驗分類效果
第四章 多核心程式設計與方法
4.1多執行緖程式設計
4.1.1執行緖
4.1.2多執行緖程式設計方法
4.2平行化策略
4.2.1資料分割(Data Decomposition)
4.2.2.任務分割(Task Decomposition)
4.3演化式分類程式設計階段
4.4平行化階段
第五章 整合後實驗與不同參數分析
5.1實驗測試規劃
5.2實驗測試環境
5.3 實驗參數
5.4 多核心效率實驗
第六章 結論與討論
6.1 結論
6.2 討論
[1]David Olson, Yong Shi, 2008,資料探勘,魏志平譯,鄭滄洋譯,美商麥格羅.希爾國際股份有限公司,台灣分公司。
[2]吳東霖,2006,平行運算應用於最小平方有限元素法模擬二維及三維流場,中原大學,碩士論文
[3]吳秉璋,2009,以多核心處理器實現一個在密集性資料上具有良好效能的探勘演算法,中華大學,碩士論文
[4]芮雍能,2005,整合平行計算與生物演算法的技術應用於整體最佳化問題之研究,國立暨南大學,碩士論文
[5]羅宇傑,2006,格網運算環境於序列型樣探勘之設計與實作,樹德科技大學,碩士論文。
[6]Peter Baer Galvin and Greg Gagne, “Operating System Concepts 6th edition”. John Wiley & Sons, Inc, 2003.
[7]Gabriele Jost, Ruud van der Pas, “Using Open-MP: portable shared memory parallel programming”. England: The MIT Press Cambridge, 2007.
[8]Thomas Jablin, Dan Upton,David August, Kim Hazelwood, and Scott Mahlke, “Multicore Compilation Strategies and Challenges”, IEEE Signal Processing Magazine, pp. 55-63, November, 2009.
[9]Shameem Akhter, Jason Roberts, “Multi-Core Programming: Increasing Performance through Software Multi-threading”, Intel Press, 2006.
[10]J. B. MacQueen, “Some Methods for classification and Analysis of Multivariate Observations”, 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp281-297, 1967.
[11]J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms”, New York: Plenum Press, 1981.
[12]Sungjin Park, Fredric M. Ham , Christopher G. Lowrie, “Discrimination of infrasound events using parallel neural network classification banks”, Nonlinear Analysis , 63 , e859 – e865 , 2005.
[13]Rhonda D. Phillips, Layne T. Watson, Randolph H. Wynne, “Hybrid image classification and parameter selection using a shared memory parallel algorithm”, Computers & Geosciences, 33, 875–897, 2007.
[14]Massimo Coppola, “High-performance data mining with skeleton-based structured parallel programming”, Parallel Computing, 28, 793–813, 2002.
[15]J. Ramírez, S. Dormido-Canto, J. Vega, JET-EFDA Contributors, “Parallelization of automatic classification systems based on support vector machines: Comparison and application to JET database”, Fusion Engineering and Design, FUSION-5025, No. of Pages3, 2009.
[16]Michael Connor and Piyush Kumar, “Fast Construction of k-Nearest Neighbor Graphs for Point Clouds”, IEEE Transactions on Visualization And Computer Graphics, vol. 16, no. 4, July/August 2010.
[17]Mohammad Saniee Abadeh, Jafar Habibi, Zeynab Barzegar, Muna Sergi, “A parallel genetic local search algorithm for intrusion detection in computer networks”, Engineering Applications of Artificial Intelligence, 20, 1058–1069, 2007.
[18]Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
[19]S. Haykin, “Neural Networks: A Comprehensive Foundation” Prentice Hall, 1999.
[20]R. Andrews, J. Diederich, and A. Tickle, “A Survey and Critique of Techniques For Extracting Rules For Trained Artificial Neural Network”, Knowledge Based Systems, 8(6):373-389, 1995
[21]R. Agrawal, R. Srikant, “Fast algorithms for mining association rules”, Proc. 20th Intl. Conference on Very Large Databases, 487-499, 1994.
[22]Wenmin Li; Jiawei Han; Jian Pei, “CMAR: accurate and efficient classification based on multiple class-association rules”, Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on 29 Nov.-2 Dec. 2001.
[23]M. Hearst. Trends & Controversies: “Support Vector Machines”, IEEE Intelligent Systems, 13(4):18-28, 1998.
[24]K. Bennett and C. Campbell, “Support Vector Machines: Hype or Hallelujah”, SIGKDD Explorations, U.K., 1995.
[25]C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
[26]T. M. Cover and P. E. Hart, “Nearest Neighbor Pattern Classification” Knowledge Based Systems, 8(6):373-389, 1995.
[27]S. Cost and S. Salzberg, “A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features”, Machine Learning, 10:57-78,1993
[28]P. Domingos and M. Pazzani, “On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss”, Machine Learning, 29(2-3):103-130, 1997.
[29]D. Heckerman, ”Bayesian Networks for Data Mining”, Data Mining and Knowledge Discovery, 1(1):79-119, 1997.
[30]Fogel, D.B., “On the philosophical differences between evolutionary algorithms and genetic algorithms”, In: Fogel, D.B. and Atmar, W., Editors, 1993. Proc. of the Second Annual Conference on Evolutionary Programming, Evolutionary Programming Society, La Jolla, CA, pp. 23–29.
[31]Fogel, D.B, “Asymptotic convergence properties of genetic algorithms and evolutionary programming”, Cybern. Syst. 25 3, pp. 389–407, 1994
[32]P.K. Sahoo, “Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming”, Appl Therm Eng 28 (2008), pp. 1580–1588
[33]Holland J.H., “Adaptation in natural and artificial system”, Ann Arbor, The University of Michigan Press, 1975.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔