(34.201.11.222) 您好!臺灣時間:2021/02/25 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡仁富
研究生(外文):Ren-Fu Tsai
論文名稱:固體水熱法合成微/介孔ZSM-5沸石研究
論文名稱(外文):Study on hydrothermal synthesis of solid micro / mesoporous ZSM-5 zeolite
指導教授:蔡振章蔡振章引用關係
指導教授(外文):Tseng-Chang Tsai
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:133
中文關鍵詞:介孔ZSM-5原位轉換法hierarchical ZSM-5沸石
外文關鍵詞:mesoporous ZSM-5in situ conversionhierarchical ZSM-5 zeolite
相關次數:
  • 被引用被引用:1
  • 點閱點閱:467
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
最近文獻研究顯示,在許多吸附與催化反應,介孔沸石性能優於傳統微孔沸石,可以提升沸石之反應選擇率或催化穩定性,具有工業應用潛力。本論文研究以固體水熱法合成方式,利用固體矽源製備階層式介孔ZSM-5沸石,探討固體矽源結構與形貌對於介孔ZSM-5沸石之微/介孔複合孔洞結構與沸石吸附/催化特性影響,藉以推論無定型固體氧化矽(amorphous silica)生成沸石之結晶轉換機制,進而設計適當之固體矽源,得以控制階層式構造(hierarchical structure)。
本研究探討介孔氧化矽MCM-41與氧化矽塊材等無定型固體矽源之轉換合成。在MCM-41矽源方面,分別以不同MCM-41樣品,在不同的水熱環境下蒸煮,進行固體轉換。利用XRD與IR光譜鑑定沸石結晶以追蹤結晶速率,實驗結果顯示,TEOS製備MCM-41之結晶速率高於Na2Si3O7合成者。BET吸附鑑定結果證實所有原位轉換之ZSM-5樣品存有介孔性質,Na2Si3O7製備Al-MCM41在酸性水熱環境下固體轉換12小時所生成之ZSM-5樣品AWG-12所具備之介孔面積Smeso與孔體積Vmicro高於TEOS製備樣品,同時,擁有最高n-Hexane與3-Methylpentane吸附量。MCM-41管壁結晶化過程涉及SiO2鍵角改變,導致MCM-41管道破裂,沸石晶粒可能生成在管道內或外管壁,吾人結合27Al NMR及TEM/SEM等相關分析,進一步推論轉換機制。
以固體轉換法,利用簡易壓製氧化矽塊材合成ZSM-5,ZSM-5將可以藉由塊材的介孔洞,形成具有複合孔構造之沸石,進而在塊材中添加天然物(如纖維素等)以侷限氧化矽組裝,預期可以縮小微/介孔ZSM-5沸石結晶。本實驗將亦探討該等不同SiO2構型之固體轉換機制,成為一般化的介孔沸石合成方法,可以直接利用非晶型氧化矽轉換生長沸石。
Recent literature shows the performance of mesoporous zeolite is better than the tranditional zeolite in the many adsorption and catalytic reactions. It can improve the reaction selectivity or zeolite’s stability. And it has the potential for industrial applications. This study takes the form of solid hydrothermal methods to use solid silicon source preparation hierarchical ZSM-5 zeolite. To explore the structure and morphology of solid silica source for the mesoporous ZSM-5 zeolite of micro / mesoporous composite zeolite pore structure and adsorption / catalytic performance, and to understand the amorphous solid silica of the crystalline zeolite conversion generates mechanism, and then design appropriate solid silicon source, to control the hierarchical structure.
In this study, we explored the mesoporous silica MCM-41 and other silica bulk materials to do the conversion synthesis. We used different samples of MCM-41 as the silica source. We also used XRD and IR spectral identification of the crystallization to track the rate of zeolite crystallization. The results showed that MCM-41 prepared using TEOS crystallization rate is higher than Na2Si3O7. The BET adsorption identification confirmed in situ conversion of all the samples of ZSM-5 had mesoporous structures. Preparation of Al-MCM41 using Na2Si3O7 is under the acidic hydrothermal environment in the conversion of solid 12 hours of ZSM-5 generated by the AWG-12 samples possess mesoporous area (Smeso) and pore volume (Vmicro) than TEOS samples. And AWG-12 had the highest n-hexane and 3-Methylpentane adsorption. As the wall of MCM-41 crystallization process involves changes in bond angle of SiO2, leading to MCM-41 pipeline rupture. Zeolite crystal may be generated within or outside the pipe wall. I combine 27Al NMR and TEM / SEM and other related analysis and further inference mechanisms.
I was prepared using a simple suppression of bulk use of silica. And I used the solid conversion ZSM-5 zeolite synthesized by use of these bulks. The ZSM-5 zeolite which will be formed by the holes in bulk with complex pore structure of zeolite. After adding in bulk natural products (such as cellulose) to limit the assembly of cellulose. I hope to narrow the micro / mesoporous ZSM-5 zeolite crystals. This experiment also explored the different configuration of the solid SiO2 conversion mechanism. This method can be generalized to the mesoporous zeolite synthesis. Then we can use the growth of amorphous silica zeolite conversion.
中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………2
第一章 前言…………………………………………………………….4
1.1介孔材料簡介……………………………………………………6
1.1.1界面活性劑……………………………………………9
1.2 沸石簡介………………………………………………………11
1.2.1 ZSM-5簡介…………………………………………… 12
1.2.2 Hierarchical Zeolite簡介………………………………...13
1.2.3 介孔沸石催化應用……………………………………..15
第二章 文獻回顧………………………………………………………17
2.1 前人相關研究……………………………………………17
2.2 介孔沸石製備……………………………………………... 19
2.2.1 後處理修飾沸石………………………………………..20
2.2.1.1 水蒸氣處理法……………………………………20
2.2.1.2 酸處理法…………………………………………20
2.2.1.3 鹼處理法…………………………………………21
2.2.2 直接合成法……………………………………………..22
2.2.2.1 奈米結構的碳模板………………………………22
2.2.2.2 碳材與聚合物氣膠模板…………………………26
2.2.2.3 聚合物陽離子模板………………………………27
2.2.2.4 有機矽模板………………………………………28
2.2.2.5 無機材料模板……………………………………29
2.2.3 材料合成方式…………………………………………..30
2.2.3.1 水熱合成法……………………………………. . .31
2.2.3.2 乾式-凝膠轉換法……………………………….31
第三章 研究策略……………………………………...........………..33
第四章 實驗內容………………………………………………....……38
4.1實驗藥品………………………………………………………38
4.2內文實驗代號統整……………………………………………39
4.3介孔氧化矽MCM-41轉換合成……………….…..…………40
4.4無定型氧化矽轉換合成介孔ZSM-5沸石……………....……43
4.4.1 無定型氧化矽之塊材製備……………………………43
4.4.2合成微/介孔ZSM-5沸石的方法……………………44
4.4.3添加纖維素侷限塊材長晶實驗……………………44
4.4.3.1樣品製備……………………………………….44
4.5 觸媒鑑定……………...………………………………………46
4.6 正己烷異構物分子吸附實驗…………………………...……47
第五章 實驗結果與討論………..…..…………………………………48
5.1利用介孔氧化矽MCM41合成微/介孔ZSM-5沸石…….……48
5.1.1酸性環境…………………………………………………48
5.1.1.1界面活性劑CTAB有/無之影響……..……….50
5.1.1.2矽源變化……………………………..………54
5.1.2中性環境……………………………..…..………………57
5.1.2.1界面活性劑CTAB有/無之影響…………………59
5.1.1.2 矽源變化………………………………………63
5.1.3蒸氣相環境……………....…………………….…..……66
5.1.3.1界面活性劑CTAB有/無之影響……………….68
5.1.3.1矽源變化……………………………………….73
5.1.4正己烷分子程溫脫附實驗……………………………77
5.1.5 IR官能基測試…………………………….…………82
5.1.5 27Al NMR偵測…………………………….…………83
5.2 利用非晶型氧化矽合成中孔ZSM-5沸石………….……..……85
5.2.1 實驗目的……………...………….……….…………85
5.2.2實驗結果與討論……………………..……………86
5.2.2.1塊材(monolith)與粉末(powder)比較…………86
5.2.2.2 塊材矽源不同………………...….…………...91
5.2.2.3塊材壓力不同……………………………….…96
5.2.2.4正己烷分子程溫脫附實驗………………….…100
5.3添加纖維素侷限塊材長晶…….…….……………..………103
5.3.1 實驗目的……………...………….……….…………103
5.3.2實驗結果與討論……………………………………..104
5.3.2.1 固體氧化矽與纖維素物理混合製備塊材…104
5.3.2.2氧化矽溶液含浸於纖維素…………………109
第六章 結論…………………………………………………………..112
第七章 下一步研究計畫……………………………….……………114
第八章 參考文獻……………….……………………..…..………….115
1.Davis, M. E. Nature 2002, 417, 813.
2.HERRMANN,C.; FETTIG,F.; PLOG,C. Appl. Catal. 1988, 39, 213.
3.Corma,A.; Martínez-Soria,V.; Schnoeveld,E. J. Catal. 2000, 192 ,163.
4.Schoeman, B. J.; J. Sterte.; Otterstedt, J.E. Zeolites 1994, 14, 110.
5.Corma,A. Chem. Rev., 1997, 97, 2373.
6.Strohmaier, K.G.; Vaughan, D.W. J. Am. Chem. Soc. 2003, 125, 6035.
7.Beck,J.S.; Vartuli,J.C.; Roth,W.J.; Leonowicz,M.E.; Kresge,C.T.; Schmitt,K.D.; Chu,C.T.-W.; Olson,D.H.; Sheppard,E.W.; McCullen, S.B.; Higgins,J.B.; Schlenker,J.L.; J. Am. Chem. Soc. 1992, 114, 10834.
8.Kresge,C.T.; Leonowicz,M.E.; Roth,W.J., Vartuli, J.C.; Beck,J.S. Nature, 1992, 359 710.
9.Chia-Hung Lee, Tien-Sung Linb, Chung-Yuan Moua, Nano Today ,
2009, 4, 165-179
10.Meynen,V.; Cool, P.; Vansant, E.F. Micropor. Mesopor. Mater. 2009,
120, 19-28.
11.Beck, J. S.; Vartuli, J. C.; Roth,W.J.; Leonowicz, M. E.; Kresge, C.
T.;Schmitt, K.D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.;
McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc.
1992, 114, 10834-10843 .
12.Monnier,A.; Schüth,F.; Huo,Q.; Kumar,D.; Margolese,D.;
Maxwell,R. S.; Stucky,G. D.; Krishnamurty,M.; Petroff,P.; irouzi,A.; Janicke,M.; Chmelka,B. F. Science. 1993, 261 1299-1303.
13.Joseph G. Hacia; Lawrence. Brody1; Mark S. Chee; Stephen P.A.
Fodor ; Francis S. Collins Nature Genetics. 1995, 14, 441-447.
14.Corma,A. Chem. Rev. 1997, 97 , 2373.
15.Jacobs,P.A.; Martens,J.A.; Stud. Surf. Sci. Catal. 1991, 58, 445.
16.Eastwood,S.C.; Drew,R.D.; Hartzell,F.D. Oil Gas J., 1962, 152.
17.Meisel,S.L.; Mc Cullough,J.P.; Lechthaler,C.H.; Weisz,P.B.
Chemtech, 1976, 87
18.Kärger,J.; Ruthven, D.M. Wiley/Interscience, 1992.
19.Hartmann,M. Angew. Chem., Int. Ed. 2004, 43, 5880.
20.Kresten Egeblad; Christina H. Christensen; Marina Kustova; Claus H.
Christensen Chem. Mater., 2008, 20, 946-960.
21.Marina Yu. Kustova; Peter Hasselriis; Claus Hviid Christensen;
Catal. Lett., 2004, 96, 3-4.
22.Ming Bo Yue, Lin Bing Sun, Ting Ting Zhuang, Xin Dong, Yuan
Chun , Jian Hua Zhu, J. Mater. Chem.,18 (2008) 2044–2050.
23.Naibo Chua; Jianhua Yang a,*; Chunyan Li b; Jiaoying Cuia; Qingyu
Zhaoa; XiaoyanYin a; Jinming Lua; Jinqu Wanga,* Microporous and Mesoporous Materials, 2009, 118, 169-175
24.Liping Liu, Guang Xiong *, Xiangsheng Wang, Jing Cai, Zhi Zhao
Microporous and Mesoporous Materials , 2009, 123, 221-227.
25.Karlsson, Arne; Stöcker, Michael; Schmidt, Ralf 12th International
Zeolite Conference. Baltimore, Maryland, USA 1998, 5-10.
26.Y. Liu; J.L. Pinnavia J.Mat. Chem., 2002, 12, 3179.
27.Karlsson, Arne; Stöcker, Michael; Schmidt, Ralf, Micropor.Mesopor. Mater., 1999, 27, 181-192.
28.Limin Huang; Wanping Guo; Peng Deng; Zhiyuan Xue; Quanzhi
Li J. Phys.Chem. B, 2000, 2817-2823.
29.Liu, Y.; Zhang,W.; Pinnavaia,T. J.; J. Am. Chem. Soc., 2000, 122,
8791.
30.趙倍賢,「微/介孔複合孔洞材料之合成、鑑定與應用之研究」,
國立高雄大學碩士論文,2008.
31.Fang,Y.; Hu,H. J. Am. Chem. Soc., 2006, 128, 10636.
32.Jacobsen,C.J.H.; Madsen,C.; Houzvicka,J.; Schmidt,I.; Carlsson,A.;
J. Am.Chem.Soc., 2000, 122, 7116.
33.Tao, Y.; Hattori,Y.; Matumoto, A.; Kanoh, H.; Kaneko, K. J. Phys.
Chem. B 2005, 109, 194.
34.Xiao,F.S.; Wang,L.; Yin,C.; Lin,K.; Di,Y.; Li,J.; Xu,R.; Su,D.;
Schlögl,R.; Yokoi,T.; Tatsumi,T. Angew. Chem., Int. Ed., 2006, 45,
3090.
35.Choi,M.; Cho, H.S.; Srivastava,R.; Venkatesan,C.; Choi, D.H.;
Ryoo, R. Nat. Mater., 5 (2006) 718.
36.Zhu,H.; Liu, Z.; Wang,Y.; Kong,D.; Yuan,X.; Xie,Z. Chem. Mater.
2008, 20, 1134.
37.Parikh,P.A.; Subrahmanyam,N.; Bhat,Y.S.; Halgeri,A.B. J.Mol.Catal.
1994, 85, 88.
38.Groen,J.C.; Moulijn,J.A.; Pérez-Ramírez,J. Micropor. Mesopor.
Mater., 2005, 87, 153.
39.Cundy,C.S., Cox, P.A. Chem. Rev. 2003, 103, 663.
40.Soler-Illia; G.J.de A.A.; Sanchez,C.; Lebeau, B.; Patarin, J. Chem.
Rev. 2002, 102, 4093.
41.X.G. Meng; F. Nawaz; F.S. Xiao, Nano Today, 2009, 4, 292-301.
42.Pavlackova,Z.; Kosova,G., Zilkova,N.; Zukal, A.; Cejka, J. Stud.
Surf. Sci. Catal., 2006, 162, 905.
43.Kustova,M.; Hasselriis,P.; Christensen,C.H. Catal. Lett., 2004, 96,
205.
44.Wei,X.; Smirniotis,P.G. Micropor. Mesopor. Mater., 2006, 89, 170.
45.Schmidt,I.; Boisen,A.; Gustavsson, E.; Ståhl,K.; Pehrson,S.; Dahl, S.;
Carlsson,A.; Jacobsen,C.J.H. Chem. Mater., 2001, 13, 4416.
46.Boisen,A.; Schmidt,I.; Carlsson,A.; Dahl,S.; Brorson,M., Jacobsen,
C.J.H. Chem. Commun. (2003) 958.
47.Janssen,A.H.; Schmidt,I.; Jacobsen,C.J.H.; Koster,A.J., de Jong, K.P. Micropor. Mesopor. Mater., 2003, 65, 59.
48.Seong-Su Kim; Jainisha Shah; Thomas J. Pinnavaia Chem. Mater., 2003, 15, 1664-1668.
49.Z. Yang; Y. Xia; R. Mokya; Adv. Mater. 2004, 16, 727.
49.Cho,S.I.; Choi,S.D.; Kim,J.H.; Kim,G.J. Adv. Funct. Mater., 2004 49.
50.Yang,Z., Xia,Y., Mokya, R. Adv. Mater,. 2004, 16, 727.
51.Jia Wang; Ajayan Vinu; Marc-Olivier Coppens J. Mater. Chem., 2007, 17, 4265–4273
52.Tao,Y.; Kanoh,H.; Kaneko,K. J. Am. Chem. Soc., 2003, 125, 6044.
53.Hanzawa,Y.; Kaneko, K. Langmuir, 1997, 13 5902.
54.H. Zhu, Z. Liu, D. Kong, Y. Wang, Z. Xie, J. Phys. Chem. C, 2008 ,
112, 17257.
55.Choi, M.; Cho, H.S.; Srivastava, R.; Venkatesan,C.; Choi,D.H.; Ryoo, R. Nat. Mater., 2006, 5, 718.
56.Zhu,H.; Liu,Z.; Wang,Y.; Kong,D.; Yuan,X.; Xie,Z. Chem. Mater.,
2008, 20, 1134.
57.Cundy,Colin S.; Cox, Paul A. Micropor. Mesopor. Mater., 2005, 82 1-78.
58.Bibby,D.M.; Dale,M.P. Nature 1985, 317, 157.
59.Xu,W.; Li,J.; Li,W.; Zhang,H.; Liang,B. Zeolites 1989, 9, 468.
60.Xu,W.; Dong,J.; Li,J.; Li,W.; Wu,F. J. Chem. Soc., Chem. Commun. 1990, 755.
61.Shukla,D.B.; Pandya, V.P.; Feeing,F. Materials Chemistry and Physics, 1993, 33, 50.
62.施郁嫻,「Al2O3/SiO2介孔材料的製備與特性研究」,
國立高雄大學碩士論文,2009.
63.Mayer, R.P.; Stowe , R.A. Journal of Colloid and Interface Science
2006, 294, 139-150
64.Yajun Wang; Alexandra S. Angelatos; Frank Caruso Chem. Mater., 2008, 20, 848-858.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔