跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥佑
研究生(外文):Yen -Yu Lin
論文名稱:使用雷射化學氣相法以W(CO)6沉積鎢金屬薄膜之特性研究
論文名稱(外文):The Study of W Thin Film Grown Using Laser Chemical Vapor Deposition
指導教授:張益新
指導教授(外文):Yee-Shin Chang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:66
中文關鍵詞:雷射化學氣相沈積六羰鎢
外文關鍵詞:LCVDW(CO)6Tungsten
相關次數:
  • 被引用被引用:0
  • 點閱點閱:814
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在研究使用雷射化學氣相沉積法(Laser Chemical Vapor Deposition, LCVD)以W(CO)6沉積W薄膜之特性。實驗方法是使用351 nm波長的半導體激發式Nd:YLF雷射以W(CO)6沉積W薄膜。固定雷射輸出功率0.38 mw垂直照射在玻璃基板上,比較以相同的沉積速度4 um/sec下以不同W(CO)6氣體流量及玻璃基板溫度下所沉積出W薄膜。
由X光繞射光譜與阻值相驗證得知所沈積的薄膜為α-W與β-W相共存,且為富α-W相。鎢薄膜呈顆粒狀結構,其有別於一般由CVD所沈積出的柱狀結構。且由EDS分析結果顯示,薄膜中各組成成分不會因溫度及流量的改變而有所變化。在相同的W(CO)6氣體流量下所沉積的W薄膜表面的結晶顆粒隨chamber溫度增加亦愈大顆。在相同的W(CO)6氣體流量下所沉積的W薄膜厚度隨chamber溫度增加而增加。且增加的薄膜厚度以70℃的約2000 Å至80℃約3000 Å最為快速。但在相同的Chamber溫度下W膜厚並不隨著W(CO)6氣體流量的增加而有所明顯的增加。隨Chamber溫度增加約每上升一℃所沉積的W薄膜的阻值約下降2.5%左右,尤其W(CO)6氣體流量在300~ 400 sccm間,當chamber溫度升至70℃時已降至1 Ω/um以下,已達薄膜品質的最佳狀況。隨著流量的增加,阻值也會微幅下降。以所沉積的薄膜表面形態,厚度,及阻值上來看,在雷射能量0.38 mw、chamber溫度約70℃及流量300 sccm的條件下能沉積出好的鎢金屬線薄膜品質。
In this study, the Laser Chemical Vapor Deposition (LCVD) was used to deposit W-film on glass substrate with gas of W(CO)6. The semiconductor laser material is Nd:YLF, and its wavelength is 351 nm. The output power of laser is fixed of 0.38 mw to radiate vertically on the glass substrate, and the speed of laser is 4 μm/sec. The gas flow of W(CO)6 is varied from 100 to 400 sccm, and the glass baseboard temperature is 50, 60, 70 and 80℃.
The X-ray diffractometer and resistance-test indicate that the W film is consisted of both α-W and β-W phase and is features a rich α-W phase. The W film shows a grain-shaped structure which is different from pillar-shaped maybe is caused by a CVD process. The results show that at the same gas flow of W(CO)6, the crystal particles on the deposited W film is bigger as the chamber temperature increase. As the chamber temperature and gas flow of W(CO)6 increase, there are not any variations of the composition for W film by the EDS analysis. At the same gas flow of W(CO)6, the thickness of W film increase with increasing the chamber temperature, and the fastest temperature is from 70℃ (about 2000Å) to 80℃ (about 3000Å). In addition, at the same Chamber temperature, the thickness of W film does not increase obviously as the gas flow of W(CO)6 increases. When the W(CO)6 gas flow is between 300 and 400 sccm, the chamber temperature rises to 70℃, the resistance of W film reduces to less than 1Ω/um, which reaches the best quality of the film. Based on the results mentioned above, the optimum conditions for depositing W film using LCVD technology are 0.38 mw for laser energy, 70℃for chamber temperature and 300 sccm for gas flow.
中文摘要...................................................i
英文摘要..................................................ii
誌謝.....................................................iii
目錄......................................................iv
表目錄....................................................vi
圖目錄...................................................vii
第一章 緒論................................................1
1.1 前言...................................................1
1.2 鎢(Tungsten)的性質.....................................2
1.3 六羰鎢 (W(CO)6)之性質..................................2
1.4 LCVD所使用之先驅物.....................................3
1.5 研究動機與目的.........................................3
第二章 半導體激發固態雷射基本理論.........................11
2.1 簡介..................................................11
2.2 Nd:YLF晶體特性 .......................................11
2.3 Nd:YLF雷射工作機理....................................12
第三章 雷射化學氣相沉積法的基本原理.......................17
3.1 化學氣相沉積的原理....................................17
3.2 薄膜沉積的原理 ................................................17
3.3 雷射化學氣相沉積......................................18
第四章 實驗方法與量測方式.................................30
4.1 實驗流程..............................................30
4.2 實驗設備..............................................30
4.3 實驗步驟..............................................31
4.4 薄膜量測..............................................32
第五章 結果與討論.........................................38
5.1 鎢金屬線薄膜晶格結構之分析............................38
5.2 不同溫度與流量對鎢金屬線薄膜表面型態之影響............38
5.3 不同溫度與流量對鎢金屬線薄膜之EDS成份分析.............39
5.4 不同溫度與流量對鎢金屬線薄膜厚度之影響................40
5.5 不同溫度與流量對鎢金屬線薄膜之電性分析................41
第六章 結論...............................................58
參考文獻..................................................59
英文論文大綱..............................................63
簡歷......................................................66


表目錄
表1.1 鎢的基本特性.........................................7
表1.2 α-W(04-0806)與β-W(47-1319)之 JCPDS 檔案繞射角度及波峰強度之資料(Cu kα1,λ?= 1.5406 Å......................8
表1.3 六羰鎢及相關金屬羰基化合物的基本特性的基本特性.......9
表1.4 Metal Hexacarbonyl 所形成的金屬薄膜特性.............10
表1.5 LCVD Metal Source的優缺點...........................10
表2.1 Nd:YLF 晶體特性表...................................15
表3.1 化合物的能階及發生Photolytic反應時適合之雷射波長....27
表3.2 不同雷射的光子能量..................................28
表4.1 Nd:YLF雷射規格......................................35


圖目錄
圖1.1 鎢的晶體結構.........................................5
圖1.2 A15體心(Cubic)結構.................................5
圖1.3 六羰鎢 W(CO)6 的分子結構圖...........................6
圖1.4 八面體配合物ML6的分子軌道............................6
圖2.1 雷射基本構成........................................13
圖2.2 Nd:YLF 雷射晶體對不同波長得吸收光譜圖...............14
圖2.3 Nd:YLF 雷射的受激發射能級示意圖.....................16
圖3.1 基板表面氣流圖圖....................................24
圖3.2 顯示沉積薄膜的五個步驟(a)成核(b)晶粒成長 (c)晶粒聚結(d)縫隙填補(e)薄膜成長圖............................25
圖3.3 光解過程............................................26
圖3.4 Cr(CO)6 Mo(CO)6 W(CO)6 之能階圖...................27
圖3.5 熱解過程............................................28
圖3.6 LCVD沉積薄膜的過程(a)第1步驟:反應開始[光解反應 > 熱解反應](b)第2步驟:原子層氣相沉積 [光解反應 > 熱解反應](c)第3步驟:薄膜增厚 [光解反應 < 熱解反應](d)第4步驟:金屬線沉積 [光解反應 < 熱解反應].....................................29
圖4.1 實驗流程............................................33
圖4.2 實驗裝置............................................34
圖4.3 開放式反應腔體(chamber).............................36
圖4.4 chamber下之LCVD沉積薄膜的過程.......................37
圖5.1 LCVD在chamber 70℃,流量300sccm所沉積出鎢薄膜之X光繞射圖譜......................................................42
圖5.2 溫度與阻值的關係....................................42
圖5.3 金屬W薄膜之SEM截面影像圖,雷射能量:0.38 mW,氣體流量:300 sccm,chamber溫度為(a)50℃,(b)60℃,(c)70℃,(d)80℃......................................................43
圖5.4 金屬W薄膜SEM 低倍率表面形態圖,雷射能量:0.38 mW,氣體流量:100 sccm,chamber 溫度為(a)50℃,(b)60℃,(c)70℃,(d)80℃......................................................44
圖5.5 金屬W薄膜SEM 低倍率表面形態圖,雷射能量:0.38 mW,氣體流量:200 sccm,chamber 溫度為(a)50℃,(b)60℃,(c)70℃,(d)80℃......................................................45
圖5.6 金屬W薄膜SEM 低倍率表面形態圖,雷射能量:0.38 mW,氣體流量:300 sccm,chamber 溫度為(a)50℃,(b)60℃,(c)70℃,(d)80℃......................................................46
圖5.7 金屬W薄膜SEM 低倍率表面形態圖,雷射能量:0.38 mW,氣體流量:400 sccm,chamber 溫度為(a)50℃,(b)60℃,(c)70℃,(d)80℃......................................................47
圖5.8 金屬W薄膜SEM 高倍率表面形態圖,雷射能量:0.38 mW,氣體流量為100 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...................................................48
圖5.9 金屬W薄膜SEM 高倍率表面形態圖,雷射能量:0.38 mW,氣體流量為200 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...................................................49
圖5.10 金屬W薄膜SEM 高倍率表面形態圖,雷射能量:0.38 mW,氣體流量為300 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...................................................50
圖5.11 金屬W薄膜SEM 高倍率表面形態圖,雷射能量:0.38 mW,氣體流量為400 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...................................................51
圖5.12 EDS 成份分析圖,雷射能量:0.38 mW,氣體流量:100 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...52
圖5.13 EDS 成份分析圖,雷射能量:0.38 mW,氣體流量:200 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...53
圖5.14 EDS 成份分析圖,雷射能量:0.38 mW,氣體流量:300 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...54
圖5.15 EDS 成份分析圖,雷射能量:0.38 mW,氣體流量:400 sccm,chamber 溫度為 (a)50℃,(b)60℃,(c)70℃,(d)80℃...55
圖5.16 流量與薄膜厚度的關係..............................56
圖5.17 溫度與薄膜厚度的關係..............................56
圖5.18 流量與阻值的關係..................................57
[1] 陳宜仁,陳建宏,”以系統動態學觀點探討台灣TFT LCD 產業發展歷程”,工研院創新與科技管理研討會 2006.
[2] 王淑珍,”台灣邁向液晶王國之秘”,中國生產力中心 2003.
[3] http://www.periodni.com/en/w.html
[4] J. Emsley, “The Elements”, (2000).
[5] http://cst-www.nrl.navy.mil/lattice/struk/a15.html
[6] 田慧仙,“傳統/感應耦合電漿磁控濺鍍及電漿鈍(氮)化鎢薄膜之本質特性與在銅金屬化之擴散阻礙性質”,逢甲大學碩士論文 2003.
[7] M. Arita, I. Nishida, “Tungsten Films with the A15 Structure”, Jpn. J. Appl. Phys. 32,(1993)1759.
[8] 謝慶堂,“場發射體材料之製備採用熱蒸鍍與化學氣相沉積法”,國立成功大學,博士論文 2007.
[9] M. S. Aouadi, R. R. Parsons, P. C. Wong, K. A. R. Mitchell, “Characterization of sputter deposited tungsten films for x-ray multilayers”, J. Vac. Sci. Technol. A10(2), (1992)273.
[10] I. A. Weerasekera, S. I. Shah, D. V. Baxter, K. M. Unruh, “Structure and stability of sputter deposited beta-tungsten thin films”, Appl. Phys. Lett. 64 (1994) 3231.
[11] P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi, F. B. Alexander, “Microstructure growth resistivity and stresses in thintungsten films deposited by rf sputtering”, J. Appl. Phys. 44, (1973) 2545.
[12] A. Bensaoula, J. C. Wolfe, A. Ignatiev, F. O. Fong, and T. S. Leung, “Direct-current-magnetron deposition of molybdenum and tungsten with rf-substrate bias”, J. Vac. Sci. Technol. A2(2), (1984)389.
[13] C.C. Tang, D. W. Hess, “Plasma-Enhanced Chemical Vapor Deposition of .beta.-Tungsten, a Metastable Phase”, Appl. Phys. Lett. 45, (1984) 633-635.
[14] A. M. Haghiri-Gosnet, F. R. Ladan, C. Mayeux, H. Launois, M.C. Joncour, “Stress and microstructure in tungsten sputtered thin films”, J. Vac. Sci. Technol. A7(4)(1989)2663.
[15] P. Colpo, T. Meziani, N. Gibson, G. Ceccone, F. Rossi, “Tungsten deposition by dual-frequency inductively coupled plasma-assisted CVD”, Surface and Coatings Technology 116–119 (1999)863.
[16] Y.G. Shen and Y.M. Mai, “Influences of oxygen on the formation and stability of A15 β-W thin films” Mater. Sci. Eng. A284, (2000)176.
[17] Y.G. Shen and Y.M. Mai, “Structure and properties of stacking faulted A15 tungsten thin films”, J. Mater. Sci. 36, (2001)93.
[18] T. Karabacak, A. Mallikarjunan, J. P. Singh, Dexian Ye, G. C. Wang, T. M. Lu, “β-phase tungsten nanorod formation by oblique-angle sputter deposition” J. Appl. Phys. Lett. 83, (2003) 3096.
[19] M. J. O’Keefe, J. T. Grant, “Phase transformation of sputter deposited tungsten thin films with A-15structure”, J. Appl. Phys. 79 (12) (1996) 9134.
[20] S.M. Rossnagel, I.C. Noyan, and C. Cabral Jr, “Phase transformation of thin sputter-deposited tungsten films at room temperature”, J. Vac. Sci. Technol. B, 20 (2002) 2047..
[21] JCPDS 04-0806.
[22] JCPDS 47-1319.
[23] N. N. Greenwood, A. Earnshaw, “Chemistry of the Elements”, 1997.
[24] H. B. Gray, N. A. Beach, “The Electronic Structures of Octahedral Metal Complexes. I. Metal Hexacarbonyls and Hexacyanides”, Journal of the American Chemical Society. 29(10)(1964)2922-2927
[25] G. J. Kubas, L. S. van der Sluys, “TricarbonylTris(nitrile) Complexes of Cr, Mo, and W”, Inorganic Syntheses. 28 (1990) 29-33.
[26] D. R. Lide, “ Handbook of Chemistry and Physics, 87Ed.”, CRC Press, 2006
[27] J. Mazumder, A. Kar, “ Theory and Application of Laser Chemical Vapor Deposition ”, Plenum Press. 1995.
[28] S. J. Yoshida, “ Films photodeposited on Si with 257nm irradiation from mononuclear metal carbonyls “ J. Appl. Phys. 61 (3) (1987) 1
[29] 劉立仁,“以控制腔長的迴授系統做摻釹氟化釔鋰鎖模雷射之穩定性研究”國立中山大學碩士論文 1995.
[30] R. L. Byer, “Diode laser-pump solid-state-laser”, Science 239 (1998) 742
[31] G. A. Malcolm, Ebrahimzadeh, A. I. Ferguson, “Efficient frequency conversion of mode-locked diode-pumped lasersand tunable all-solid-state laser sources”, IEEE J. Quanyum Electron. 28 (4) (1992) 1172.
[32] N. P. Barnes, M. E. Strom, P. L.Cross, and M. W. Skolaut, “Efficiency of Nd laser materials with laser diode pumping”, IEEE J. Quanyum Electron. 26 (3) (1990) 558
[33] 郭艷光,”科學月刊”,1998年2月號.
[34] 康志聰,“摻釹氟化釔鋰克爾透鏡鎖模之研究”國立中山大學碩士論文 1998.
[35] 林敬舜,“聲光調制器對半導體雷射幫浦的鎖模 Nd:YLF 雷射的影響”國立中山大學碩士論文 1994.
[36] http://www.redoptronics.com/Nd-YLF-crystal.html
[37] N. P. Barnes, M. E. Strom, P. L. Cross, M. W. Skolaut, “Efficient of Nd laser Diode Pumping”, IEEE J. Quanyum Electron 26 (3) (1990) 553.
[38] 丁勝懋,“雷射工程導論”,中央圖書出版社(1998).
[39] J. T. Verdeyen, ”Laser Electronics”, chapter 5 (1989).
[40] 莊達人,“VLSI 製造技術”,高立圖書有限公司(2000).
[41] 田民波,“薄膜技術與薄膜材料”,五南圖書出版有限公司(2007).
[42] 陳光華、鄧金祥,“新型電子薄膜材料”,化學工業出版社(2006).
[43] A. Rosa, E. J. Baerends, S. J. A. van Gisbergen, E. van Lenthe, J. A. Groeneveld, J. G. Snijders, “Electronic spectra of M(CO)6(M=Cr、Mo、W) Revisited by a Relativistic TDDFT Approach”, J. Am. Chem. Soc. 121 (44) (1999) 10356.
[44] A. Kar, J. Mazumder, “Laser chemical vapor deposition of thin films”, Materials Science and Engineering B41 (1996) 368.
[45] C. Duty, D. Jean, W. J. Lackey, “ Laser chemical vapor deposition: materials, modeling, and process control”, International materials reviews 46 (2001) 271.
[46] J. Remes, “The development of laser chemical vapor deposition and focused ion beam methods for prototype integrated circuit modification”, 2006.
[47] S. N. Dubtsov, A. I. Levykin, K. Sabelfeld, “Kinetics of aerosol formation during tungsten hexacarbonyl photolysis”, Journal of Aerosol Science 4 (31) (2000) 509.
[48] K. K. Lai, H. H. Lamb, “Tungsten chemical vapor deposition using tungsten hexacarbonyl: microstructure of as-deposited and annealed films”, Thin Solid Films 370 (2000) 114.
[49] J. B. Park, C. J. Kim, P. E. Shin, S. H. Park, H. S. Kang, S. H. J Jeong, “ Hybrid LCVD of micro-metallic lines for TFT-LCD circuit repair”, Applied Surface Science 253 (2006) 1029.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top