跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林柏宇
研究生(外文):Bo-Yu Lin
論文名稱:以電漿增強化學氣相沉積系統在塑膠基材上製備有機/無機多層水氣阻障層之研究
論文名稱(外文):A study on the preparation of a stacked organic / inorganic vapor barrier structure on plastic substrates using plasma-enhanced chemical vapor deposition
指導教授:劉代山
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:氣體阻障層氧化矽
外文關鍵詞:WVTRBarrierSiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:763
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電漿增強化學氣相沉積系統,以連續製程方式沉積有機矽基薄膜與無機氧化矽薄膜在可撓式塑膠基板上製作氣體阻障層,藉由改變有機矽基薄膜厚度來提升無機氧化矽薄膜品質,研究結果顯示,當有機矽基薄膜厚度為50 nm且無機氧化矽薄膜之厚度500 nm時,相較於單層氧化矽薄膜,其薄膜內應力可以從875 MPa下降至80 MPa,且藉由百格附著度測試可以發現,其薄膜附著度從0B上升至5B等級,而水氣滲透率(Water Vapor Transmission Rate)則由0.57 g/m2/day下降至0.30 g/m2/day,薄膜之有效透氣率從0.358 μm-g/m2/day下降至0.18 μm-g/m2/day,因此,從上述實驗結果可以發現,藉由沉積適當厚度之有機矽基薄膜的確能有效地降低無機氧化矽薄膜與可撓式塑膠基板間的殘留應力,進而提升薄膜附著度及阻水氣的能力。
接著為了進行多對有機/無機薄膜沉積,以進一步提升氣體阻障特性,研究中則選擇擁有最佳的薄膜有效滲透率0.179 μm-g/m2/day之氧化矽薄膜(~200 nm),利用有機矽基(50 nm)/無機氧化矽(200 nm)薄膜厚度製作出一至六對具有有機/無機多層薄膜之結構,達到高阻水氧及高穿透率特性之氣體阻障層。實驗結果顯示,所沉積之多層鍍膜具有高達90%之可見光穿透率,且水氣滲透率已低於商用水氣滲透儀(MOCON)之量測極限(<1×10-3 g/m2/day),並以鈣測試法(Calcium Test)量測此多層鍍膜之水氣滲透率,經由放置14天於40 oC以及30%相對溼度環境下,其中六對有機/無機多層膜結構擁有最低水氣滲透率為4×10-6 g/m2/day。

The study used a plasma enhanced chemical vapor deposition system to continuously deposit organic and inorganic silicon oxide gas barrier layers on a flexible plastic substrate, which the purpose was to change the organic silicon-based thin film thickness to increase the inorganic silicon oxide thin film quality. Research results showed that when the organic silicon-based thin film thickness was 50 nm, and inorganic silicon oxide thin film thickness was 500 nm, the thin film internal stress reduced from 875 MP to 80 Mpa when compared to a mono-layer silicon oxide thin film. Furthermore from the cross-cut adhesion test, it was found that the thin film adhesion increased from 0B to 5B, where the water vapor permeation reduced from 0.57 g/m2/day to 0.30 g/m2/day. The thin film’s effective gas transmission reduced from 0.358 μm-g/m2/day to 0.18 μm-g/m2/day. From the above experimental results, we discovered that the deposition of a suitable thickness of the organic silicon-based thin film can indeed effectively reduce the residual stress between the inorganic silicon oxide thin film and flexible plastic substrate, and further increase thin film adhesion its water vapor barrier capability.
Furthermore, the study conducted multiple pairs of organic /inorganic thin film deposition to further increase gas barrier characteristics. The research selected the silicon oxide thin film (~200 nm) which had the optimal thin film effective permeability 0.179 μm-g/m2/day, and applied an organic silicon-based (50 nm)/inorganic silicon oxide (200 nm) thin film thickness to produce 1 ~ 6 pairs of organic /inorganic multi-layer thin film structures to achieve gas barrier layers with high water and oxygen obstruction and high transparency characteristics. Experimental results showed that the deposited multiple layer film coating reached 90%之visible light transparency, and the water vapor permeation was already lower than the measuring limit (&lt;1×10-3 g/m2/day) of the commercialized water vapor transmission rate tester (MOCON). The films were further tested with the calcium tester to obtain the water vapor transmission rate. After 14 days at 40 oC and a 30% relative humidity environment, the film with 6ix organic /inorganic multi-layer film structure pairs had the lowest water vapor transmission at 4×10-6 g/m2/day.

中文摘要...................................................i
英文摘要..................................................ii
誌謝.....................................................iii
目錄......................................................iv
表目錄....................................................vi
圖目錄...................................................vii

第一章 緒論................................................1
1.1 前言.................................................1
1.2  文獻回顧.............................................2
1.3  研究動機.............................................4
第二章 理論基礎...........................................11
2.1 電漿理論............................................11
2.1.1 電漿的成分..........................................11
2.1.2 電漿的產生..........................................12
2.1.3 電漿的形成..........................................12
2.2 薄膜成長原理........................................13
2.3 化學氣相沉積........................................14
2.4  塑膠基板與玻璃基板簡介..............................15
2.5  水氣滲透原理及機制..................................17
2.6  薄膜應力原理及機制..................................19
第三章 實驗方法及步驟.....................................27
3.1 實驗流程............................................27
3.2  實驗系統............................................27
3.3 薄膜量測分析........................................28
第四章 結果與討論.........................................39
4.1 氧化矽水氣阻障層穩定性分析..........................39
4.1.1 薄膜附著度測試.....................................40
4.1.2 薄膜應力特性分析...................................41
4.1.3 材料及光學特性量測.................................41
4.1.4 水氣滲透率特性.....................................43
4.2 多層有機-無機水氣阻障層研究.........................44
4.2.1 不同氧化矽薄膜厚度水氣透率.........................44
4.2.2 多層結構材料及光學特性量測.........................45
4.2.3 水氣滲透率量測結果.................................45
4.3 鈣測試量測.........................................46
第五章 結論與未來工作.....................................64
參考文獻..................................................66
Extened Abstract
個人簡歷


【1】鄭培毓, “可撓式塑膠基板拓展新應用領域”, 光連雙月刊, 37期, pp. 52-55 (2002).
【2】張秋萍, 黃天恆, “電漿技術應用於OLED阻氣膜介紹”,化工資訊與商情,第18期, pp. 53~58 (2004).
【3】田宏隆, “高阻氣高透明塗料材料技術與運用”, 工業材料雜誌, 206期, pp. 87-92 (2004).
【4】黃承揚, “低溫塑膠光學濾鏡電漿聚合膜技術”, 光學工程, 82期, pp. 124-131 (2003).
【5】T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, “High-Performance Transparent Barrier Films of SiOx/SiNx Stacks on Flexible Polymer Substrates” Journal of The Electrochemical Society, 153, pp. 244-248 (2006).
【6】S. C. Deshmukh and E. S. Aydil, “Low Temperature Plasma Enhanced Chemical Vapor Deposition of SiO2”, Appl. Phys. Lett., 65, pp. 3185-3188 (1994).
【7】S. C. Deshmukh and E. S. Aydil, “Investigation of SiO2 plasma enhanced chemical vapor deposition through tetraethoxysilane using attenuated total reflection Fourier transform infrared spectroscopy”, J. Vac. Sci. Technol. A, 13, pp. 2355-2367 (1995).
【8】Y. Inoue and O. Takai, “Mass spectroscopy in plasma-enhanced chemical vapor deposition of silicon oxide films using tetramethoxysilane”, Thin Solid Films, 316, pp. 79-84 (1998).
【9】J. Batey and E. Tierney, “Low-temperature deposition of high-quality silicon dioxide by plasma-enhanced chemical vapor deposition”, J. Appl. Phys., 60, pp. 3136-3145 (1986).
【10】O. Joubert, R. Burke, L. Vallier, C. Martinet and R. A. B. Devine, “Influence of ion energy on the physical properties of plasma deposited SiO2 reset films”, Appl. Phys. Lett., 62, pp. 228-230 (1993).
【11】J. C. Alonso, S. J. Ramirez, M. Garcia and A. Ortiz, “High rate-low temperature deposition of silicon dioxide films by remote plasma enhanced chemical vapor deposition using silicon tetrachloride”, J. Vac. Sci. Technol. A, 13, pp. 2924-2929 (1995).
【12】P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. B. Sullivan, “Ultra barrier flexble substrate for flat panel displays”, Displays, 22, pp. 65-69 (2001).
【13】A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays”, Appl. Phys. Lett., 83, pp. 413-415 (2003).
【14】M. S. Weaver,L. A. Michalski, P. E. Burrow,and G. L. Graff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates”, Appl. Phys. Lett, 81, pp. 2929-2931 (2002).
【15】A. G. Erlat, B. M. Henry , J. J. Ingram, D. B. Mountain, A. McGuigan,R. P. Howson, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, “Characterisation of aluminium oxynitride gas barrier films ”, Thin Solid Films, 388, pp. 78-86 (2001).

【16】G. G. Ayuso , L. Vhzquez , J. M. Martinez-Duart , “Atomic force microscopy (AFM) morphological surface characterization of transparent gas barrier coatings on plastic films”, Surf. Coat. Technol., 80, pp. 203-206 (1996).
【17】K. Teshima, H. Sugimura, Y. Inoue, and O. Takai, “Gas Barrier Performance of Surface-Modified Silica Films with Grafted Organosilane Molecules”, Langmuir, 19, pp. 8331-8334 (2003).
【18】R. A. B. Devine and M. Marchand, “Evidence for structural similarities between chemical vapor deposited and neutron irradiated SiO2”, Appl. Phys. Lett., 63, pp. 619-621 (1993).
【19】L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings”, J. Vac. Sci. Technol. A, 18, pp. 2619-2645 (2000).
【20】A. M. Mahajan , L. S. Patil, J. P. Bange, D. K Gautam, “Growth of SiO2 films by TEOS-PECVD system for microelectronics applications”, Surf. Coat. Technol., 183, pp. 295-300 (2004).
【21】A. Hozumi, and O. Takai, “Preparation of ultra water-repellent films by microwave plasma-enhanced CVD”, Thin Solid Films, 303, pp. 222-225 (1997).
【22】J. S. Lewis and M. S. Weaver, “Thin-Film Permeation-Barrier Technology for Flexible Organic Light-Emitting Devices”, IEEE Journal of Selected Topics in Quantum Electronics, 10, pp. 45-55 (2004).
【23】Yelena G. Tropsha and Noel G. Harvey, “Activated Rate Theory Treatment of Oxygen and Water Transport through Silicon Oxide/Poly(ethylene terephthalate) Composite Barrier Structures”, J. Phys. Chem. B, 101, pp. 2259–2266 (1997).
【24】A. S. da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J. E. Klemberg-Sapieha, and M. R. Wertheimer, “Transparent barrier coatings on polyethylene terephthalate by singleand dual-frequency plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol, 16, pp. 3190-3198 (1998).
【25】A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche, and M. R. Wertheimer, “Defect-permeation correlation for ultrathin transparent barrier coatings on polymers”, J. Vac. Sci. Technol. A , 18, pp. 149-157 (2000).
【26】G. Kaltenpoth, W. Siebert, F. Stubhan, X. Wang, L. Luo, “Moisture barrier properties of plasma enhanced chemical vapor deposited SiCxNy films on polyethylene naphthalate sheets and epoxy molding compound”, Surface and Coatings Technology, 161, pp.96–101 (2002).
【27】W. D. Huang, X. H. Wang, M. Sheng, L. Q. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. Zhang, S. C. Zou, “Low temperature PECVD SiNx films applied in OLED packaging”, Materials Science and Engineering, 98, pp.248-254 (2003).
【28】W. H. Koo, S. M. Jeong, S. H. Choi and H. K. Baik, “Water Vapor Barrier Properties of Transparent SnO2-SiOx Composite Films on Polymer Substrate”, J. Phys. Chem. B, 108, pp.18884-18889 (2004).
【29】J. H. Lee, C. H. Jeong, J. T. Lim, N. G. Jo, S. J. Kyung, G. Y. Yeom, “Properties of SiOxNy thin film deposited by low temperature plasma enhanced chemical vapor deposition using TEOS-NH3-O2-N2 gas mixtures”, Surfce & Coatings Technology, 200, pp.680-685 (2005).
【30】D. S. Wuu, W. C. Lo, C. C. Chiang, H. B. Lin, L. S. Chang, R. H. Horng, C. L. Huang, Y. J. Gao, “Plasma-deposited silicon oxide barrier films on polyethersulfone substrates:temperature and thickness effects”, Surfce & Coatings Technology, 197, pp.253-259 (2005).
【31】C. H. Jeong, J. H. Lee, J. T. Lim, N. G. Cho, C. H. Moon and G. Y. Yeom, “Deposition of SiO2 by Plasma Enhanced Chemical Vapor Deposition as the Diffusion Barrier to Polymer Substrates”, Japanese Journal of Applied Physics, 44, pp.1022-1026 (2005).
【32】D. S. Wuu, T. N. Chen, C. C. Wu, C. C. Chiang, Y. P. Chen, R. H. Horng and F. S. Juang, “Transparent Barrier Coatings for Flexible Organic Light-Emitting Diode Applications”, Chem. Vap. Deposition, 12, pp.220-224 (2006).
【33】S. J. Bae, J. W. Lee, J. S. Park, D. Y. Kim, S. W. Hwang, J. K. Kim and B. K. Ju, “Enhancement of Barrier Properties Using Ultrathin Hybrid Passivation Layer for Organic Light Emitting Diodes”, Japanese Journal of Applied Physics, 45, pp.5970-5973 (2006).
【34】N. Inagaki, V. Cech, K. Narushima, Y. Takechi, “Oxygen and Water Vapor Gas Barrier Poly(ethylenenaphthalate)Films by Deposition of SiOx Plasma Polymers from Mixture of Tetramethoxysilane and Oxygen”, Journal of Applied Polymer Science, 104, pp.915-925 (2007).
【35】M. L. Zhou, Y B. Fu, Q. Chen and Y. J. Ge, “Deposition of SiOx barrier films by O2/TMDSO RF-PECVD”, Chinese Physics, 16, pp.1101-1104 (2007).
【36】T. Oyaidu, Y. Ogawa, K. Tsurumaki, K. Ohdaira, H. Matsumura, “Formation of gas barrier films by Cat-CVD method using organic silicon compounds”, Thin Solid Films, 516, pp.604-606 (2008).
【37】M. C. Lin, L. S. Chang, H. C. Lin, “Effects of nitrogen partial pressure on titanium oxynitride films deposited by reactive RF magnetron sputtering onto PET substrates”, Surface & Coatings Technology, 202, pp.5440-5443 (2008).
【38】D. G. Howells, B. M. Henry, J. Madocks, H. E. Assender, “High quality plasma enhanced chemical vapour deposited silicon oxide gas barrier coatings on polyester films”, Thin Solid Film, 516, pp.3081-3088 (2008).
【39】J. H. Yun, S. H. Lee, Y. J. Jeong, H. R. Lee, J. D. Kwon and G. H. Lee, “Reduction of Defects in SiOx Vapor Permeation Barriers on Polymer Substrates by Introducing a Sputtered Interlayer”, Japanese Journal of Applied Physics, 48, pp.(055503)1-5 (2009).
【40】D. S. Wuu, T. N. Chen, E. Lay, C. H. Liu, C. H. Chang, H. F. Wei, L. Y. Jiang, H. U. Lee and Y. Y. Chang, “Transparent Barrier Coatings on High Temperature Resisting Polymer Substrates for Flexible Electronic Applications”, Journal of The Electrochemical Society, 157, pp.47-51 (2010).
【41】Hong Xiao 著.羅正忠 張鼎張 譯, ”半導體製程技術導論 二版”, 歐亞書局, chap 7 (2001).
【42】莊達人, “VLSI 製造技術”, 高立圖書有限公司, chap. 5, 89年6月20日四版六刷.
【43】L. Eckertova, and T. Ruzicka, “Diagnostics and Applications of Thin Films”, Institute of Physics Publishing, chap. 1 & 2 (1993).
【44】Michael Quirk、Julian Serda 著, 羅文雄、蔡榮輝、鄭岫盈 譯,“半導體製造技術”, 滄海書局, chap. 11, 2005年8月初版三刷.
【45】SEMATECH, “Deposition Processes”, in Furnace Processes and Related Topics (Austin, TX : SEMATECH), p.6 (1994).
【46】吳東權等, “微機電系統之技術現況與發展”, 工業技術研究院機械工業研究所, 民國八十六年八月十五日二版修訂.
【47】王宣文,以電漿表面預處理法在塑膠基板上鍍製抗反射膜,中央大學光電所碩士論文(2005).
【48】田宏隆, “可撓式平面顯示器用基板材料”, 工業材料雜誌, 234期, pp. 144-152 (2004).
【49】K. Teshima, H. Sugimura, Y. Inoue and O. Takai, “Gas Barrier Performance of Surface-Modified Silica Films with Grafted Organosilane Molecules”, Langmuir, 19, pp. 8331-8334 (2003).
【50】B. M. Henry , A. G. Erlat, A. McGuigan, C. R. M. Grovenor, G. A. D. Briggs, Y.Tsukahara, T. Miyamoto, N. Noguchi, T. Niijima, “Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates”, Thin Solid Films, 382, pp. 194-201 (2001).
【51】楊順文, “電漿碳氮層-TPX 複合膜氧氮分離效能之研究”, 私立中原大學碩士論文 (2002).
【52】R. S. Kumar, M. Auch, E. Ou, G. Ewald and C. S. Jin, “Low moisture permeation measurement through polymer substrates for organic light emitting devices”, Thin Solid Films, 417, pp. 120-126 (2002).
【53】A. P. Roberts, B. M. Henry , A. P. Sutton , C. R. M. Grovenor , G. A. D. Briggs ,T. Miyamoto, M. Kano, Y. Tsukahara , M. Yanaka , “Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects”, J. Membr. Sci., 208, pp. 75-88 (2002).
【54】R. W. Hoffman, in physics of nonmetallic Thin Films, edited by C. H. S.Dupuy and A. Cachard, Plenum Press: New York, p.273, (1976).
【55】K. L. Chopra, Mechanical effects in thin films, in Thin Film Phenomena, McGRAW -HILL : New York, p.266, (1969).
【56】吳俊慶,“以射頻共濺鍍系統於室溫下沉積透明導電膜之研究”, 國立虎尾科技大學碩士論文 (2005).
【57】吳政洋,“塑膠基板上沉積防水膜之研究”, 國立虎尾科技大學碩士論文 (2006).
【58】汪建民,“材料分析”, 中國材料學會,五刷( 1998 ).
【59】林鶴南,李龍正,劉克迅, “原子力顯顯微術及其在半導體研究應用上的研究", 17, pp. 29-38 (1995).
【60】科榮(Veeco/DI)股份有限公司, “DIMENSION SERIES中文操作及應用手冊Ver.4.01”, pp. 1-83 (2002).
【61】聯宙科技股份有限公司, “PERMATRAN-W®Model 3/61 Operator’s Manual”, pp. 1-166 (2002).
【62】G. Nisato, P. C. P. Bouten, P. J. Slikkerveer, W. D. ennett, G. L. Graff, N. Rutherford, and L.Wiese, “Evaluating High Performance Diffusion Barrier: the Calcium Test”, Proc. Asia Display/IDW01, pp. 1435-1438 (2001).
【63】Y. C. Lin, W. Q. Shi, Z. Z. Chen, “Effect of deflection on the mechanical and optoelectronic properties of indium tin oxide films deposited on polyethylene terephthalate substrates by pulse magnetron sputtering” ,Thin solid Films , 517, pp. 1701– 1705 (2009).
【64】D. S. Liu, C.Y. Wu, “Adhesion enhancement of hard coatings deposited on flexible plastic substrates using an interfacial buffer layer”, J. Phys. D: Appl. Phys. 43 (2010) 175301.
【65】V. Bhatt, S. Chandra, S. Kumar, “Stress evaluation of RF sputtered silicon dioxide films for MEMS”, Indian Journal of Pure & Applied Physics, 45, pp. 377-381 (2007).
【66】W. S. Liao, and S. C. Lee, “Water-induced room-temperature oxidation of Si-H and -Si-Si- bonds in silicon oxide”, J. Appl. Phys., 80, pp. 1171-1176 (1996).
【67】W. S. Liao, C. H. Lin and S. C. Lee, “Oxidation of silicon nitride prepared by plasma-enhanced chemical vapor deposition at low temperature”, Appl. Phys. Lett., 65, pp. 2229-2231 (1994).
【68】K. Teshima, Y. Inoue, H. Sugimura and O. Takai,“Reduction of carbon impurities in silicon oxide films prepared by rf plasma-enhanced CVD”, Thin Solid Films, 390, pp. 88-92 (2001).
【69】O. Takai and A. Hozumi and N. Sugimoto, “Coating of transparent water-repellent thin films by plasma-enhanced CVD”, J. Non-Cryst. Solids, 218, pp. 280-285 (1997).
【70】K. Teshima, Y. Inoue, H. Sugimura and O. Takai, “Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane”, Vacuum, 66, pp. 353-357 (2002).
【71】E. Lugscheider, K. Bobzin, Th. Hornig and M. Maes, “Investigation of the residual stresses and mechanical properties of (Cr,Al)N arc PVD coatings used for semi-solid metal (SSM) forming dies”, Thin Solid Films, 420, pp. 318-323 (2002).
【72】J. Wiley and Sons, “ Infrared Characteristic Group Frequencies"(1997).
【73】Y. Wu, M. Bekke, Y. Inoue, H. Sugimura, H. Kitaguchi, C. Liu, and O. Takai, “Mechanical durability of ultra-water-repellent thin film by microwave plasma-enhanced CVD”, Thin Solid Films, 457, pp. 122-127 (2004).
【74】F. Benitez, E. Martinez, and J. Esteve, “Improvement of hardness in plasma polymerized hexamethyldisiloxane coatings by silica-like surface modification”, Thin Solid Films, 377-378, pp. 109-114 (2000).
【75】S. Iwamori, Y. Gotoh, K. Moorthi, “Characterization of silicon oxynitride gas barrier films”, Vacuum, 68, pp. 113-117 (2003).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top