跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏志遠
研究生(外文):Chih-Yuan Yen
論文名稱:智慧型彩色影像紋理辨識技術
論文名稱(外文):Intelligent Color Image Texture Recognition Technique
指導教授:蔡鴻旭蔡鴻旭引用關係
指導教授(外文):Hung-Hsu Tsai
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:92
中文關鍵詞:離散小波轉換奇異值分解粒子族群最佳化演算法支持向量機影像辨識
外文關鍵詞:discrete wavelet transformsingular value decompositionparticle swarm optimizationsupport vector machineimage recognition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:984
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文所提出智慧型彩色影像紋理辨識技術,首先將彩色影像轉換為R、G、B三張影像,再將所獲得的三張影像利用奇異值分解加強影像之紋理並結合離散小波轉換特徵抽取方法抽取紋理色彩特徵,接著使用支持向量機及粒子族群最佳化演算法挑選最佳特徵組合與支持向量機參數。根據實驗結果顯示,本研究所提出之方法其效能優於其他現存的影像辨識方法。

This paper presents a novel intelligent color image texture recognition technique which is called the ICITR technique. First, it applies singular value decomposition (SVD) to each channel image of a RGB color image to enhance image textures. Subsequently, it extracts color texture features in discrete wavelet transform domain of the original channel image and its corresponding enhanced texture image with SVD. The ICITR technique employs a support vector machine (SVM) to be a multiclassifier. Meanwhile, particle swarm optimization is utilized to select the best feature combination and the parameters used in the SVM. The experimental results show that the ICITR technique can achieve satisfying results and also outperforms other existing methods under consideration here.

目錄
中文摘要 ...............i
英文摘要 ...............ii
誌謝 ...............iii
目錄 ...............iv
表目錄 ...............vi
圖目錄 ...............vii
一、 緒論 ...............1
1.1 研究背景............... 1
1.2 相關研究 ...............3
1.3 研究動機與目的...............5
1.4 研究架構 ...............7
1.5 論文架構 ...............8
二、 影像辨識文獻探討 ...............9
2.1 影像辨識系統 ...............11
2.2 影像辨識系統性能評估方式 ...............12
2.3 特徵抽取 ...............15
2.3.1 離散傅立葉轉換 ...............16
2.3.2 離散餘弦轉換 ...............18
2.3.3 離散小波轉換 ...............20
2.3.4 熵與能量 ...............22
2.3.5 加伯濾波器 ...............23
2.3.6 奇異值分解 ...............25
2.3.7 卡亨南-拉維轉換 ...............28
2.4 計算智慧 ...............30
2.4.1 支持向量機 ...............31
2.4.2 k個臨近法............... 33
2.4.3 貝氏分類器 ...............34
2.4.4 調適性類神經模糊推論系統 ...............36
2.4.5 粒子族群最佳化 ...............38
三、 本論文提出之影像紋理辨識方法...............40
3.1 現存影像紋理特徵結合常用分類器之探討............... 40
3.2 SWSIR方法之設計 ...............42
3.3 智慧型影像紋理辨識方法 ...............45
3.4 智慧型彩色影像紋理辨識方法 ...............46
四、 實驗結果 ...............48
4.1 影像資料集設計 ...............48
4.1.1 USC資料集............... 49
4.1.2 Brodatz資料集 ...............51
4.1.3 VisTex資料集 ...............54
4.1.4 Sun-Harvest資料集 ...............55
4.1.5 Coffee beans資料集............... 57
4.2 分類器參數設定 ...............60
4.3 效能評估 ...............63
4.3.1 現存影像紋理特徵結合常用分類器效能評估...............63
4.3.2 SWSIR方法效能評估 ...............65
4.3.3 CSWSIR效能評估 ...............66
4.3.4 CSWSCIR效能評估 ...............67
4.3.5 CSWSIR、CSWSCIR與現存方法比較...............68
五、 結論及未來研究...............70
參考文獻 ...............72
附錄一…............... 78
附錄二… ...............90
Extended Abstract
簡歷

[1] F. Camastra, "A SVM-based cursive character recognizer," Pattern Recognition, vol. 40, pp. 3721-3727, 2007.
[2] I. Turkoglu and E. Avci, "Comparison of wavelet-SVM and wavelet-adaptive network based fuzzy inference system for texture classification," Digital Signal Processing, vol. 18, pp. 15-24, 2008.
[3] A. Sengur, "Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification," Expert Systems with Applications, vol. 34, pp. 2120-2128, 2008.
[4] R. Kouassi, P. Gouton and M. Paindavoine, "Approximation of the Karhunen-Loe`ve transformation and its application to colour images," Signal Processing: Image Communication, vol. 16, pp. 541-551, 2001.
[5]R. C. Gonzalez and R. E. Woods, "Digital Image Processing," Prentice-Hall, Upper Saddle River, 2002.
[6]M. J. Swain and D. H. Ballard, "Color indexing", Computer Vision, vol. 7, pp. 11-32, 1991.
[7]W. Niblack, R. Barber, W. Equitz, M.D. Flickner, E.H. Glasman, D. Petkovic, P. Yanker, C. Faloutsos and G. Taubin, "QBIC project: querying images by content, using color, texture, and shape," Proceedings of SPIE—The International Society for Optical Engineering, pp. 173-187, 1993.
[8]M. A. Stricker and M. Orengo, "Similarity of color images," International Society for Optical Engineering, pp. 381-392, 1995.
[9] T. C. Lu and C. C. Chang, "Color image retrieval techniques based on color features and image bitmap," Information Processing and Management, vol. 43, pp. 461-472, 2007.
[10] V. Bombardier, E. Schmitt and P. Charpentier, "A fuzzy sensor for color matching vision system," Measurement, vol. 42, pp. 189-201, 2009.
[11] T. Tsai, Y.-P. Huang and T.-W. Chiang, "Dominant feature extraction in block-DCT domain," IEEE International Conference on Systems, 2006.
[12] C. H. Wei, Y. Li, W. Y. Chau and C. T. Li, "Trademark image retrieval using synthetic features for describing global shape and interior structure," Pattern Recognition, vol. 42, pp. 386-394, 2009.
[13] Z. Iscan, Z. Dokur and T. Ölmez, "Tumor detection by using Zernike moments on segmented magnetic resonance brain images," Expert Systems with Applications, vol. 37, pp. 2540-2549, 2010.
[14] G. AlGarni and M. Hamiane, "A novel technique for automatic shoeprint image retrieval," Forensic Science International, vol. 181, pp.10-14, 2008.
[15] M.K. Hu, "Visual pattern recognition by moment invariants," IRE Transactions on Information Theory, vol. 8, pp. 179-187, 1962.
[16] M. Idrissa and M. Acheroy, "Texture classification using Gabor filters," Pattern Recognition, vol. 23 pp. 1095-1102, 2002.
[17] J. Han and K. K. Ma, "Rotation-invariant and scale-invariant gabor features for texture image retrieval," Image and Vision Computing, vol. 25, pp. 1474-1481, 2007.
[18] W.-T. Wong and S.-H. Hsu, "Application of SVM and ANN for image retrieval," European Journal of Operational Research, vol. 173, pp. 938-950, 2006.
[19] S. Arivazhagan and L. Ganesan, "Texture classification using wavelet transform," Pattern Recognition Letters, vol. 24, pp. 1513-1521, 2003.
[20] D.-G. Sim, H.-K. Kim and R.-H. Park, "Invariant texture retrieval using modified Zernike moments," Image and Vision Computing, vol. 22, pp. 331-342, 2004.
[21] D. Zhong and I. Defe´e, "DCT histogram optimization for image database retrieval," Pattern Recognition Letters, vol. 26, pp. 2272-2281, 2005.
[22] S. Arivazhagan, L. Ganesan and T.G. Subash Kumar, "Texture classification using ridgelet transform," Pattern Recognition Letters, vol. 27, pp. 1875-1883, 2006.
[23] J.-L. Starck, E. J. Candès and D. L. Donoho, "The curvelet transform for image denoising," IEEE Transactions on Image Processing, vol. 11, no. 6, June, 2002.
[24] A. Sengur, I. Turkoglu and M. C. Ince, " Wavelet packet neural networks for texture classification," Expert Systems with Applications, vol. 32, pp. 527-533, 2007.
[25] D. Wua, H. Yang, X. Chen, Y. He and X. Li, "Application of image texture for the sorting of tea categories using multi-spectral imaging technique and support vector machine," Journal of Food Engineering, vol. 88, pp. 474-483, 2008.
[26] A. Vécsei, T. Fuhrmann, M. Liedlgruber, L. Brunauer, H. Payera and A. Uhl, "Automated classification of duodenal imagery in celiac disease using evolved Fourier feature vectors," Computer Methods and Programs in Biomedicine, vol. 95, pp. S68-S78, 2009.
[27] G.A. Papakostas, Y.S. Boutalis, D.A. Karras and B.G. Mertzios, "Pattern classification by using improved wavelet Compressed Zernike Moments," Applied Mathematics and Computation, vol. 212, pp. 162-176, 2009.
[28] Y.-L. Qiao, C.-Y. Song and C.-H. Zhao, "M-band ridgelet transform based texture classification," Pattern Recognition Letters, vol. 31, pp. 244-249, 2010.
[29] C. Chaux, L. Duval and J.-C. Pesquet, "Image analysis using a dual-tree M-band wavelet transform," IEEE Transactions on Image Processing, vol. 15, no. 8, August, 2006.
[30] I. Turkoglu and E. Avci, "Comparison of wavelet-SVM and wavelet-adaptive network based fuzzy inference system for texture classification," Digital Signal Processing, vol. 18, pp. 15-24, 2008.
[31] A. Sengur, "Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification," Expert Systems with Applications, vol. 34, pp. 2120-2128, 2008.
[32] X. Zhou, W. Jiang, Y. Tian and Y. Shi, "Kernel subclass convex hull sample selection method for SVM on face recognition," Neurocomputing, vol.73, pp. 2234-2246, 2010.
[33] E. Lughofer, "On-line evolving image classifiers and their application to surface inspection," will be published in journal of Image and Vision Computing, 2009.
[34] M. Kokare, P. K. Biswas and B. N. Chatterji, "Rotation-invariant texture image retrieval using rotated complex wavelet filters," IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, vol. 36, no. 6, Dec. 2006.
[35] T. S. Subashini, V. Ramalingam and S. Palanivel, "Breast mass classification based on cytological patterns using RBFNN and SVM," Expert Systems with Applications, vol. 36, pp. 5284-5290, 2009.
[36] wiki: http://zh.wikipedia.org/
[37] K. Xie and Y.M. Zhu, "Classification of brain tumors using kurtosis of the DCT data," will be published in journal of European Journal of Radiology, 2009.
[38] H.-H. Tsai, H.-C. Tsezg and Y.-S. Lai, “Robust lossless image watermarking based on α-trimmed mean algorithm and support vector machine,” Journal of Systems and Software, vol. 83, pp. 1015-1028 , 2010.
[39] Sengur, A., “Wavelet Transform and Adaptive Neuro-fuzzy Inference System for Color Texture Classification,” Expert Systems with Applications, vol. 34, pp. 2120-2128, 2008.
[40] F. Camastra, "ASVM-based cursive character recognizer," Pattern Recognition, vol.40, pp.3721-3727, 2007.
[41] D. He, D. Zhou and Y. Zhou, "Identifying transcription factor targets using enhanced Bayesian classifier," Computational Biology and Chemistry, vol. 31, pp. 355-360, 2007.
[42] L. Yu, Z. He and Q. Cao, "Gabor texture representation method for face recognition using the Gamma and generalized Gaussian models," Image and Vision Computing, vol. 28, pp.177-187, 2010.
[43] L. Nanni and A. Lumini, "Descriptors for image-based fingerprint matchers," Expert Systems with Applications, vol. 36, pp. 12414-12422, 2009.
[44] M. V. Barel, Y. Vanberghena and P. V. Doorenb, "Using semiseparable matrices to compute the SVD of a general matrix product/quotient," journal of Computational and Applied Mathematics, vol. 234, pp. 3175-3180, 2010.
[45] M. L. Fowler, M. Chen, J. A. Johnson and Z. Zhou, "Data compression using SVD and Fisher information for radar emitter location," Signal Processing, vol. 90, pp. 2190-2202, 2010.
[46] M.-Q. Fan, H.-X. Wang and S.-K. Li, "Restudy on SVD-based watermarking scheme," Applied Mathematics and Computation, vol. 203, pp. 926-930, 2008.
[47] K.-L. Chung, W.-N. Yang, Y.-H. Huang, S.-T. Wu and Y.-C. Hsu, "On SVD-based watermarking algorithm," Applied Mathematics and Computation, vol. 188, pp. 54-57, 2007.
[48] M. Fleury, R.P. Self and A.C. Downton, "Development of a fine-grained parallel Karhunen–Loe`ve transform," Journal of Parallel and Distributed Computing, vol. 64, pp. 520-535, 2004.
[49] R. Kouassi, P. Gouton and M. Paindavoine, "Approximation of the Karhunen-Loe`ve transformation and its application to colour images," Signal Processing: Image Communication, vol. 16, pp. 541-551, 2001.
[50] A. Sengur, "Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification," Expert Systems with Applications, vol. 34, pp. 2120-2128, 2008.
[51] A. Konar, "Computational intelligence: Principles, techniques and applications, " Chwa, 2005.
[52] A. Thammano and J. Moolwong, "A new computational intelligence technique based on human group formation," Expert Systems with Applications, vol. 37, pp. 1628-1634, 2010.
[53] V. Vapnik , "The nature of statistical learning theory," Springer-Verlag, New York, 1995.
[54] H. Qian, Y. Mao, W. Xiang and Z. Wang, "Recognition of human activities using SVM multi-class classifier," Pattern Recognition Letters, vol. 31, pp. 100-111, 2010.
[55] Y. Ding, X. Song and Y. Zen, "Forecasting financial condition of Chinese listed companies based on support vector machine," Expert Systems with Applications, vol. 34, pp. 3081-3089, 2008.
[56] http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#multi_label_classification
[57] S. Tan, "An effective refinement strategy for KNN text classifier," Expert Systems with Applications, vol. 30, pp. 290-298, 2006.
[58] H.-S. Su, "Multi-source fuzzy information fusion method based on Bayesian optimal classifier," Acta Automatica Sinica, vol. 34, pp. 282-287, 2008.
[59] J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, May./June. 1993.
[60] J. Zapata, R. Vilar and R. Ruiz, "An adaptive-network-based fuzzy inference system for classification of welding defects," NDT&E International, vol. 43, pp. 191-199, 2010.
[61] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, Nov. 1995.
[62] P.-S. You, Y.-C. Hsieh and C.-M. Huang, "A particle swarm optimization based algorithm to the Internet subscription problem," Expert Systems with Applications, vol. 36, issue 3, pp. 7093-7098, Apr. 2009.
[63] C.-C. Tseng, J.-G. Hsieh and J.-H. Jeng, "Active contour model via multi-population particle swarm optimization," Expert Systems with Applications, vol. 36, issue 3, pp. 5438-5352, Apr. 2009.
[64] T. Niknam and B. Amiri, "An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis," Applied Soft Computing, vol. 10, pp. 183-197, 2010.
[65] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," In Proceeding of the IEEE congress on evolutionary computation, pp. 69-73, 1998.
[66] E. Avci, "Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system," Applied Soft Computing, vol. 8, pp. 225-231, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top