(3.238.240.197) 您好!臺灣時間:2021/04/12 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏庭堃
研究生(外文):Ting-Kuen Yan
論文名稱:液冷封裝高功率LED照明之自然對流熱傳研究
論文名稱(外文):Study of Free Convection Heat Transfer for the Liquid-Cooled Package of High-Power LED Illuminations
指導教授:周榮源周榮源引用關係
指導教授(外文):Rong-Yuan Jou
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:96
中文關鍵詞:液冷散熱自然對流高功率LED熱阻
外文關鍵詞:Liquid CoolingNatural ConvectionHigh-Power LEDThermal Resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討液冷封裝高功率LED照明之自然對流熱傳現象。將高功率LED陣列在矩形密閉容器中,以金屬殼體當成散熱基本結構,搭配三種透光且不導電之空氣、矽油和FC-40流體改變熱傳性能,藉由改變輸入功率3W、6W和9W,不同擺置角度0°、90°和180°照明下探討其自然對流熱傳現象。數值模擬主要是使用COMSOL模組進行分析LED整體受到輸入功率3W、6W和9W以及不同擺置角度0°、90°和180°照明之影響;實驗量測部分則是自行設計組裝一套自然對流實驗平台,擺置角度在0°照明下,以7個溫度量測點記錄LED整體模組溫度變化,其包括LED基板溫度、LED周圍流體溫度、金屬殼體外壁四個位置點溫度和環境溫度,分別進行量測三個輸入功率及三種流體特性所產生之變化情形,希望以實驗量測值來驗證分析模擬結果之準確性。並將模擬分析與實驗量測結果作比對驗證。分析研究結果對於不同的擺置角度會對LED晶片接面溫度造成影響,擺置角度在90°有較佳的降低晶片接面以熱阻來探討三種擺置角度下,改變流體對於液冷封裝高功率LED熱傳性能的影響。其中在擺置角度90°中,填充FC-40流體相對於空氣可以改善最佳的熱阻值為2.07~2.86%。
In this study, natural convection heat transfer for the liquid-cooled package of high-power LED illumination module is investigated. Numerical simulations and experimental measurements are adopted to explore the heat transfer characteristics for the high-power LED arrays which are enclosed by a metal enclosure and are immersed in one of the three kinds of fluids, air, silicone oil, and FC-40, respectively, with transparent and electrical resistance characteristics. The COMSOL software is adopted to analyze the effects when the LED illumination module is subjected to the input power of 3W, 6W, and 9W, respectively, and is aligned to the orientation of 0°, 90°, 180°, respectively. In experimental measurements, the illumination module aligned in 0° orientation is investigated. Temperature responses at 7 different locations including one point for LED substrate position, one point for LED’ ambient fluids, one point for acrylic enclosure’ air, and four points for the metal enclosure wall, respectively, are measured for three input powers and three different fluids, respectively. Numerical results are compared to experimental data for validation of the accuracy of this study. According to the analyzed results, junction temperatures are changed due to orientation variations of illumination module and the 90° orientation is shown to be with the lowest junction temperature. Regarding to thermal resistances analyses, in the 90° orientation, resistance value for the FC-40 filled case is 2.07~2.86% lower than the air filled case.
目 錄
中文摘要................................................................................................................i
Abstract.................................................................................................................ii
誌謝......................................................................................................................iii
目錄......................................................................................................................iv
表目錄................................................................................................................viii
圖目錄...................................................................................................................x
符號說明............................................................................................................xiv
第一章 緒論.....................................................................................................1
1.1 前言......................................................................................................1
1.2 文獻回顧..............................................................................................4
1.2.1 LED散熱研究..............................................................................4
1.2.2 流體自然對流熱傳分析.............................................................6
1.3 研究動機與目的..................................................................................7
1.4 研究架構..............................................................................................9
第二章 數值分析...........................................................................................10
2.1 LED光熱電模型.................................................................................10
2.2 液冷散熱封裝LED照明....................................................................14
2.2.1 自然對流理論...........................................................................14
2.2.2 物理模型與基本假設...............................................................18
2.2.3 統御方程式...............................................................................19
2.2.4 邊界條件...................................................................................21
2.2.5 分析流程...................................................................................25
2.2.6 網格測試...................................................................................26
第三章 實驗量測...........................................................................................28
3.1 實驗模型............................................................................................28
3.1.1 實驗模型主要結構...................................................................28
3.1.2 LED液冷封裝之液體..............................................................30
3.2 實驗架構............................................................................................31
3.3 實驗設備............................................................................................33
3.3.1 熱傳導係數量測儀...................................................................33
3.3.2 數據擷取系統...........................................................................33
3.3.3 直流電源供應器.......................................................................33
3.3.4 功率計.......................................................................................33
3.3.5 照度計.......................................................................................33
3.4 實驗量測方法....................................................................................34
3.4.1 熱電耦線溫度量測.................................................................34
3.4.1.1 熱電偶線校正原理........................................................35
3.4.1.2 校正方法與步驟............................................................36
3.4.2 紅外線熱像儀溫度場拍攝......................................................37
3.4.2.1 紅外線基本原理............................................................38
3.4.2.2 紅外線熱像儀之量測方法............................................40
3.4.2.3 紅外線熱像儀量測之實驗步驟....................................41
3.5 實驗步驟............................................................................................41
3.6 實驗不確定度評估............................................................................43
3.6.1 隨機誤差...................................................................................43
3.6.2 系統誤差...................................................................................43
第四章 結果與討論.......................................................................................46
4.1 數值模擬結果討論............................................................................46
4.1.1 空氣流體之數值分析結果.......................................................46
4.1.2 矽油流體之數值分析結果.......................................................50
4.1.3 FC-40流體之數值分析結果....................................................54
4.1.4 相同擺置角度下不同流體接點溫度.......................................58
4.1.5 不同流體對內部自然對流熱傳現象之影響.......................... 61
4.1.6 相同擺置角度下不同流體熱阻之探討...................................62
4.2 實驗量測結果討論............................................................................64
4.2.1 填充不同流體之溫度變化.......................................................64
4.2.2 液冷封裝高功率LED照明量測...............................................71
4.3 數值分析與實驗量測誤差比對..............................................................72
4.3.1 空氣流體數值分析與實驗量測誤差比對...............................72
4.3.2 矽油流體數值分析與實驗量測誤差比對...............................73
4.3.3 FC-40流體數值分析與實驗量測誤差比對............................74
第五章 結論與建議.......................................................................................76
5.1 結論....................................................................................................76
5.2 建議....................................................................................................77
參考文獻.........................................................................................................78
附錄.................................................................................................................81
附錄A 儀器詳細規格..............................................................................81
附錄B 熱電偶線校正結果......................................................................88
附錄C 紅外線熱像儀規格......................................................................88
附錄D 紅外線熱像儀-放射率的測定與感測器的溫度校正.................92
附錄E 實驗量測結果...............................................................................95
英文論文大綱
作者簡歷
參考文獻
[1]楊書榮,“新世紀新型態之散熱技術發展,”工業材料雜誌,181, pp. 139-143 (2002)。
[2]Zetao Ma, Xiaojun Wang, Daqing Zhu and Sheng Liu, “Thermal Analysis and Modeling of LED Arrays Integrated With an Innovative Liquid-cooling Module,” 6th International Conference on Electronic Packaging Technology, IEEE, pp. 542-545 (2005).
[3]葉隆興、胡凡勳、許國君和陳志臣,“發光二極體於封閉空間及自然(由)對流環境下之熱模擬分析,”中國機械工程學會第二十三屆全國學術研討會論文集 (2006)。
[4]經濟部智慧財產局,高功率發光二極體電燈,TW. I270631 (2006)。
[5]Lan Kim, Jong Hwa Choi, Sun Ho Jang and Moo Whan Shin, “Thermal Analysis of LED Array System With Heat Pipe,” Thermochimica Acta, 455, pp. 21-25 (2007).
[6]Joseph Bielecki, Ahmad Sameh Jwania, Fadi El Khatib and Thomas Poorman, “Thermal Considerations for LED Components in an Automotive Lamp,” Semiconductor Thermal Measurement and Management Symposium, pp. 18-22 (2007).
[7]Chun-Jen Weng, “Advanced thermal enhancement and management of LED packages,” International Communications in Heat and Mass Transfer, 36, p.p. 245-248 (2009).
[8]N. Wang, C. H. Wang, J.X. Lei and D.S. Zhu, “Numerical Study on Thermal Management of LED Packaging by Using Thermoelectric Cooling,” International Conference on Electronic Packaging Technology and High Density Packaging, pp. 433-437 (2009).
[9]S. S. Hsieh and S. S. Yang, “Flow structure and temperature measurements in a 3-D vertical free convective enclosure at high Rayleigh numbers,” International Journal of Heat and Mass Transfer, 40, pp. 1467-1480, (1997).
[10]I. Sezai and A. Mohamad, “Natural Convection from a Discrete Heat Source on the Bottom of a Horizonal Enclosure,” International Journal of Heat and Mass Transfer, 43, pp. 2257-2266 (1999).
[11]白景傑, “三維凸出熱體之自然對流之計算,” 國立成功大學航太太空工程學系碩士論文 (2002)。
[12]C. Cianfrini, M. Corcione and P. P. Dell’Omo, “Natural convection in tilted square cavities with differentially heated opposite walls,” International Journal of Thermal Sciences, 44, pp. 441-451 (2005).
[13]LED Professional Review, Issue 13 May/June (2009).
[14]S. Y. Hui and Y. X. Qin, “A General Photo-Electro-Thermal Theory for Light Emitting Diode (LED) Systems,” IEEE Transactions on Power Electronics, 24, pp. 1967-1976 (2009).
[15]Y.X. Qin, Deyan Lin and S. Y. Hui, “A Simple Method for Comparative Studyon the Thermal Performance of LEDs andFluorescent Lamps,” IEEE Transactions on Power Electronics, 24, pp. 1811-1818 (2009).
[16]液光固態照明公司, “液體沉浸熱管理高功率LED封裝技術,” http://www.liquidleds.com.tw/。
[17]Incropera and DeWitt, “Fundamentals of Heat and Mass Transfer 5/e,” (2006).
[18]劉君愷, “LED照明產品之散熱技術介紹,” 工業材料雜誌,260, pp. 135-143 (2008)。
[19]Song-Bor Chiang, “The Thermal Analysis of Sequential LED Driven Mode,” IEEE, pp. 203-206 (2009).
[20]韓偉國和譚瑞敏, “LED散熱模組之熱阻模型,” 中國機械工程學會第二十五屆全國學術研討會論文集 (2008)。
[21]蘇艾、劉英傑和王芷琳, “陣列式排列LED面光源熱傳特性研究,” 中國機械工程學會第二十五屆全國學術研討會論文集 (2008)。
[22]李豫華,“發光二極體的散熱技術,”科學發展,435,pp. 18-21 (2009)。
[23]M. Y. Tsai, C. H. Chen, and C. S. Kang, “Thermal Analyses and Measurements of Low-Cost COP Package for High-Power LED,” Electronic Components and Technology Conference, pp. 1812-1818 (2008).
[24]G. Cesini, M. Paroncini, G. Cortella and M. Manzan, “Natural convection from a horizontal cylinder in a rectangular cavity,” International Journal of Heat and Mass Transfer, 42, pp. 1801-1811 (1999).
[25]S. J. Kline and F. A. McClintock, “Describing Uncertainties in Singe-Sample Experiments,” Mechanical Engineering, pp. 3-8(1953).
[26]H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids, 2nd Edition,” Oxford, London (1959).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔