跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐啟哲
研究生(外文):Chi. Che. Tang
論文名稱:工具機熱平衡結構設計與分析
論文名稱(外文):Design and Analysis for Machine Tool Structure by Heat Balance Concept
指導教授:林盛勇
指導教授(外文):S. Y. Lin
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:創意工程與精密科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:110
中文關鍵詞:熱變形熱對稱有限元素法熱平衡
外文關鍵詞:thermal deformationheat symmetryfinite element methodheat balance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:899
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
工具機在高速切削過程中結構溫升熱變形成為目前最須克服的難題,而近年來即時線上熱補償系統技術的成熟,雖提升了傳動定位精度,但無法精確掌握非線性的熱變形。本文針對立式切削加工機在運作中產生的熱源,進行熱對稱結構及冷卻抑制的設計,達到機台熱平衡的狀態,減少熱變形對加工精度的影響,並提升機台結構熱穩定性。
首先針對工具機頭座、軸承座及導螺桿等主要發生熱變形單元進行熱探討,以瞭解熱源對結構的影響性。接著導入熱對稱、阻隔及冷卻等特性,進行工具機結構熱平衡設計,應用熱傳理論和運用主軸跑合實驗所測得之熱溫升數據當作邊界條件,利用有限元素法進行上述主單元之熱變形模擬分析並據以反覆修正其結構幾何尺寸。同時試著調變控制熱傳導方向與熱接觸傳導面積大小,使結構溫度分佈達到熱對稱設計,特別著重於底座結構板及肋尺寸與排列方式之設計,維持機台結構足夠的剛性。最後針對完成設計的整體機台分析其熱傳情況及溫度場,檢視工具機結構此改良設計之熱變形行為。並施加作用力於結構分析其剛性、強度、模態。同時分析此機械力與熱結構耦合作用下,瞭解此熱對稱結構設計的剛性及熱穩定性。結果顯示結構變形位移量主要來自於熱變形,此熱對稱的結構設計所呈現的變形量皆為對稱性變形,且適當的冷卻抑制,有效降低熱變形量的產生,維持結構中心位置的精度穩定性,達到熱平衡設計的結構需求。


Thermal deformation of the structure due to temperature rise in high-speed cutting process becomes a challenge that should be overcome at present for machine tools. In recent years, the real-time online technology for thermal compensation system has been largely progressed. Although, the positioning accuracy of a feed-drive system has been increased, but it still can not solve the nonlinear thermal deformation of the structure thoroughly. This study focuses on the heat source generation in a vertical machining center during operation and tries to perform a structure design of heat symmetry and thermal suppression via cooling. The goal is to achieve a heat balance structure, reduce the effect of thermal deformation on machining accuracy and promote the thermal stability of a machine tool structure.
First of all, a thermal study is performed on some major parts in a machine tool including headstock, bearing housing and ball screw, which the thermal deformation is easily to occur within them. The effect of heat source on these structure deformations is also investigated. Using the concepts of heat symmetry, isolation and cooling characteristics to conduct a structure design fulfilling a heat balance requirement for machine tool. The temperature data measured from the spindle run-in test is utilized as the boundary conditions which are combined with heat conduction theory for finite element analyses on those major parts just mentioned above. Based on the analysis results, the geometrical dimensions of those major parts in a machine tool are modified repeatedly and the base part including plate and rib dimension arrangements in this design are specially emphasized to keep a sufficient structural rigidity. It tries to change and control the heat conduction direction and contact area, which results in a symmetrical temperature distribution state based on a design concept of heat symmetry, and the influence of uneven thermal deformation will be greatly reduced. Finally, heat conduction and temperature distribution simulation are performed on this entire machine tool structure just designed completely and to investigate the thermal deformation behavior after this improvement design. In addition, a mechanical force is applied on this structure to investigate its rigidity, strength, modal shape. The rigidity and thermal stability are also investigated for this design structure with heat symmetry under the coupling action between both the mechanical and thermal loads. The results show that the deformation of a machine tool structure is mainly contributed from the thermal deformation. The design structure with heat symmetry exhibits a symmetrical deformation in thermal displacement which may also be reduced effectively by an appropriate cooling suppression strategy. The position stability and accuracy for each center point in the structures can thus be kept and the design machine tool structure fulfills the heat balance demand in industry.


目 錄
中文摘要 .............................................i
英文摘要 ............................................. iii
誌謝 ............................................. v
目錄 ............................................. vi
表目錄 ............................................. viii
圖目錄 ............................................. ix
第一章 前言......................................... 1
1.1 研究背景..................................... 1
1.2 研究動機與目的............................... 3
1.3 文獻回顧..................................... 6
1.4 論文為架構................................... 16
第二章 工具機熱變形理論............................. 17
2.1 工具機熱變形誤差............................. 17
2.2 熱傳遞方式................................... 19
2.3 熱變形的型態................................. 22
2.4 影響工具機熱變形的原因....................... 25
第三章 熱對稱結構設計.............................. 34
3.1 溫度分佈與熱傳導分析......................... 38
3.2 熱能計算基礎理論............................. 38
3.2.1 主軸軸承熱能計算............................. 39
3.2.2 滾珠導螺桿熱溫升值與變形量................... 40
3.2.3 熱傳導計算基礎.............................. 43
3.3 頭座熱平衡結構設計........................... 45
3.4 導螺桿油霧冷卻系統........................... 51
3.5 軸承座幾何對稱設計........................... 53
3.6 底座三點支撐設計............................. 54
第四章 工具機結構數值模擬分析....................... 57
4.1 數值模擬分析................................. 57
4.1.1 工具機結構模型建立與設定..................... 57
4.1.2 執行方法與步驟............................... 60
4.2 工具機結構溫度場數值模擬分析................ 62
4.3 結構剛性分析................................. 75
4.4 模態分析..................................... 81
4.5 熱結構耦合分析............................... 89
第五章 結論......................................... 96
參考文獻 ............................................. 99
附錄A ............................................. 103
附錄B ............................................. 106
作者簡歷 ............................................. 111


[1]E. Creighton, A. Honegger, A. Tulsian, D. Mukhopadhyay, 2009, Analysis of thermal errors in a high-speed micro-milling spindle, International Journal of Machine Tools & Manufacture, Vol.10, pp.1106-1114
[2]Jenq-Shyong Ch, Wei-Yao Hsu, 2003, Characterizations and models for the thermal growth of a motorized high speed spindle, International Journal of Machine Tools & Manufacture, Vol.43, pp.1163-1170
[3]Jong-Jin Kima, Young Hun Jeong, Dong-Woo Cho, 2004,Thermal behavior of a machine tool equipped with linear motors, International Journal of Machine Tools & Manufacture, Vol.44, pp.749-758
[4]王保民、胡赤兵、孫建仁、劉洪芹,高速電主軸熱態特性的ANSYS模擬分析,蘭州理工大學學報,第35卷第1期,第28-31頁,2009
[5]郭策、孫慶鴻,高速高精度數控車床主軸系統的熱特性分析及熱變形計算,東南大學學報,第35卷第2期,第222-234頁,2005
[6]馮平、段明亮、李鍛能、肖曙紅、張伯霖,高速內藏式主軸單元熱態特性的有限元分析,廣東工業大學電機工程學院,2002
[7]Xu Min, Jiang Shuyun, Cai Ying, 2007, An improved thermal model for machine tool bearings, International Journal of Machine Tools & Manufacture, Vol.47, pp.53-62
[8]Zhao Haitao, Yang Jianguo, Shen Jinhua, 2007, Simulation of thermal behavior of a CNC machine tool spindle, International Journal of Machine Tools & Manufacture, Vol.47, pp.1003-1010
[9]Jin Kyung Choi, Dai Gil Lee, 1998, Thermal characteristics of the spindle bearing system with a gear located on the bearing span, International Journal of Machine Tools & Manufacture, Vol.38, pp.1017-1030
[10]Tae Jo Ko, Tae-weon Gim, Jae-yong Ha, 2003, Particular behavior of spindle thermal deformation by thermal bending, International Journal of Machine Tools & Manufacture, Vol.43, pp.17-23
[11]T. Holkup, H. Cao, P. Kola, Y. Altintas, J. Zeleny, 2010, Thermo-mechanical model of spindles, CIRP Annals - Manufacturing Technology, Vol.10, pp.1007-1010
[12]Ching-Feng Chang, Jin-Jia Chen, 2009, Thermal growth control techniques for motorized spindles, Mechatronics, Vol.19, pp.1313–1320
[13]熊萬里、黃紅武、張俊輝、鄧新春,高速精密電主軸動態熱態特性的研究發展,振動工程學報,第十七卷增刊,第61-64頁,2004
[14]P.Vanherck, J. Dehaes, M. Nuttin, 1997, Compensation of thermal deformation in machine tools with neural nets, Computers in Industry, Vol.33, pp.119-125
[15]M. Mori, H. Mizuguchi, M. Fujishima, Y. Ido, N. Mingkai, K. Konishi, 2009, Design optimization and development of CNC lathe headstock to minimize thermal deformation, CIRP Annals-Manufacturing Technology, Vol.58, pp.331-334
[16]Jin-Hyeon Lee, Seung-Han Yang, 2002, Statistical optimization and assessment of a thermal error model for CNC machine tools, International Journal of Machine Tools & Manufacture, Vol.42, pp.147-155
[17]F. Gori, M. De Stefanis, W.M. Worek, W.J. Minkowycz, 2008, Transient thermal analysis of Vega launcher structures, Applied Thermal Engineering, Vol.28, pp.2159-2166
[18]J. Jgdrzejewski, Kowal, W. Kwasny, W. Modrzycki, Hybrid Model of High Speed Machining Centre Headstock, Institute of Production Engineering and Automation -Wroctaw University of Technology, Wroctaw, Poland
[19]Ting-Yu Chen, Wei-Jiunn Wei, Jhy-Cherng Tsai, 1999, Optimum design of headstocks of precision lathes, International Journal of Machine Tools & Manufacture, Vol.39, pp.1961-1977
[20]揚宏智、王榮邦,CNC車床熱誤差分析暨改善研究,機械月刊,第二十四卷第三期,第266-274頁,1998
[21]吳政憲、龔佑泰,龍門加工機溫升熱變形量測與分析,機械月刊,第二十九卷第三期,第48-58頁,2003
[22]歐峰銘、林清源,精密搪床之熱行為解析,機械月刊,第三十五卷第四期,第80-90頁,2009
[23]范光照,工具機熱誤差補償技術,機械月刊,第二十五卷第三期,第490-502頁,1999
[24]王焜潔、曾柏昌、葉佐理,資料挖掘技術於CNC工具機熱變形補償之應用,機械月刊,第三十三卷第九期,第30- 49頁,2007
[25]王焜潔、吳政憲、林國銘、詹子棋,電腦輔助工程與適應性模糊理論在工具機結構與熱誤差改良之應用,計量管理期刊,第3卷第2期,第123-132頁,2006
[26]Jong-Jin Kima, Young Hun Jeong, Dong-Woo Cho, 2004,Thermal behavior of a machine tool equipped with linear motors, International Journal of Machine Tools & Manufacture, Vol.44, pp.749-758
[27]Wu Hao, Zhang Hongtao, Guo Qianjian, Wang Xiushan, Yang Jianguo, 2008, Thermal error optimization modeling and real-time compensation on a CNC turning center, Journal of materials processing technology ,Vol.207, pp.172–179
[28]M. Weck , RWTH Aachen, 1995, Reduction and Compensation of Thermal Errors in Machine Tools, Laboratory for Machine Tools and Production Engineering (WZL), Vol.44, pp.589–598
[29]S. Eastwood, P. Webb, 2009, Compensation of thermal deformation of a hybrid parallel kinematic machine, Robotics and Computer-Integrated Manufacturing, Vol.25, pp.81–90
[30]Min Yang Yang , Jae Jong Lee, 1998, Measurement and prediction of thermal errors of a CNC machining center using two spherical balls, Journal of Materials Processing Technology Vol.75, pp.180-189
[31]Shuhe li , Yiqun Zhang, Guoxiong, Zhang, 1997, A study of pre-compensation for thermal errors of NC machine tools, International Journal of Machine Tools & Manufacture, Vol.37, pp.1715-1719
[32]M. Weck , RWTH Aachen, 1995, Reduction and Compensation of Thermal Errors in Machine Tools, Laboratory for Machine Tools and Production Engineering (WZL), Vol.44, pp.589–598
[33]張銘雄,工具機溫昇熱變形及補償之控制研究,中原大學碩士論文,2003
[34]珠泰佑,工具機結構溫昇熱變形測試與分析,大葉大學碩士論文,2001
[35]黃逸群、陳彥羽、劉家銘、李玉山,滾珠導螺桿的熱變位與潤滑的影響,機械月刊,第三十四卷第九期,第24-34頁,2008
[36]Cheng-Hsien Wu , Yu-Tai Kung, 2003, Thermal analysis for the feed drive system of a CNC machine, International Journal of Machine Tools & Manufacture, Vol.43, pp.1521-1528
[37]Sun-Kyu Lee, Jae-Heung Yoo, Moon-Su Yang, 2003, Effect of thermal deformation on machine tool slide guide motion, Tribology International, Vol. 36, pp.41–47
[38]李建華,宋雙文,張靖周,不同結構肋化通道對流換熱特性的試驗,航空動力學報,第二十二卷第十期,第1163-1166頁,2007
[39]屈岳陵,滾珠螺桿高速進給下熱抑制之探討,機械月刊,第二十四卷第三期,第52-56頁,2002
[40]歐峰銘,A+工具機結構熱平衡技術深化與應用研究,機械工業雜誌,第312期,第68-75頁,2009


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top