[1]http://www.me.tnu.edu.tw/~me022/lab/nanomater.htm
[2]蔡信行,孫光中,“奈米科技導論”,新文京開發出版股份有限公司93年初版
[3]Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties”, J. Phys. Chem. 95, 525-532 (1991).
[4]M. V. Rama Krishna, R. A. Friesner, “Quantum confinement effects in semiconductor clusters”, J. Chem. Phys. 95, 8309 (1991).
[5]T. Ohgi and D. Fujita, “Consistent size dependency of core-level binding energy shifts and single-electron tunneling effects in supported gold nanoclusters”, Phys. Rev. B 66, 115410 (2002).
[6]R. C. Jaklevic, John Lambe, A. H. Silver, and J. E. Mercereau, “Quantum Interference Effects in Josephson Tunneling”, Phys. Rev. Lett. 12, 159–160 (1964).
[7]F. Bodker, S. Morup and S. Linderoth, “Surface effects in metallic iron nanoparticles”, Phys. Rev. Lett. 72 (1994).
[8]Keng-Che Cheng, Fu-Rong Chen and Ji-Jung Kai, “V2O5 nanowires as a functional material for electrochromic device”, Sol. Energy Mater. Sol. Cell. 90, 1156-1165 (2006).
[9]Shigeru Nishio and Masato Kakihana, “Evidence for Visible Light Photochromism of V2O5”, Chem. Mater. 3730–3733 (2002).
[10]Mi Ra Min, Jae Hoon Kim and Eun Kyu Kim, Yong Kwan Kim and Jeong Sook Ha, Kyu Tae Kim “Electrical Properties of V2O5 (Vanadium Pentoxide) Nanowire”, J. Korean Phys. Soc. Vol. 49, No.3 (2006).
[11]J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth and M. Burghard, “Electrical Transport Through Individual Vanadium Pentoxide Nanowires”, Adv. Mater Vol. 16, 420-424 (2000).
[12]Kyu Won Lee, Hyocheon Kweon, Jitae Park, and Cheol Eui Lee, “Charge and spin dynamics in VO2 nanorods”, Appl. Phys. Lett. Vol. 94, 233111 (2009).
[13]Zu Rong Dai, Zheng Wei Pan, and Zhong L. Wang, “Novel Nanostructure of Functional Oxides Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13, No. 1,9 (2003).
[14]王健懿,“Al-Si合金粉末製備奈米線之機制研究”,國立清華大學材料科學工程研究所碩士論文 (2005)[15]S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature 354, 56-58 (1991).
[16]Nasreen G. Chopra, R. J. Luyken, K. Cherrey, Vincent H. Crespi, Marvin L. Cohen, Steven G. Louie and A. Zettl, “Boron Nitride Nanotubes”, Phys. Chem. Vol. 269, No.5226 (1995).
[17]Maja Remskar, Zora Skraba, Pierre Stadelmann, and Francis Levy, “Structural Stabilization of New Compounds: MoS2 and WS2 Micro- and Nanotubes Alloyed with Gold and Silver”, Adv. Mater. 12, 11 (2000).
[18]Hong-Ming Lin, “奈米材料合成技術”, Department of Materials Engineering Tatung University ; http://nano.mse.ttu.edu.tw/html/doc/Class01_Intro/3.pdf
[19]林聖紘,“藉微波電漿輔助化學氣相沉積系統合成氧化鈦奈米材料與特性分析”,國立清華大學材料科學工程研究所碩士論文 (2006)[20]Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Yadong Yin, Franklin Kim and Haoquan Yan, “One-Dimensional Nanostructures Synthesis Characterization and Application”, Adv. Mater. 15, 5 (2003).
[21]Hong-Ming Lin, “奈米材料合成技術”, Department of Materials Engineering Tatung University ; http://nano.mse.ttu.edu.tw/html/doc/Class02_produ/3.pdf
[22]高逢時,科學發展2005年2月,386期,67-71.
[23]超微粒子材料技術,莊萬發編撰,復漢出版社印行,1995年
[24]B. Lewis, “The growth of crystals of low supersaturation: I. Theory”, J. Crystal Growth, Vol. 21, 29-39 (1974).
[25]R. S. Wagner, W. C. Ellis, “Vapor-Solid-Growth Mechamism of Single Crystal Growth”, Appl. Phys. Lett. 4, 89 (1964).
[26]Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. 13, No. 2 (2001).
[27]Yiqing Chen, Xuefeng Cui, Kun Zhang, Dengyu Pan, Shuyuan Zhang, Bing Wang and J. G. Hou, “Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation”, Chem. Phys. Lett. Vol. 369, 16-20 (2003).
[28]B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang and D. P. Yu, “Field-emission properties of TiO2 nanowire arrays”, Appl. Phys. Vol. 38, 1152 (2005).
[29]Yufeng Hao, Guowen Meng, Zhong Lin Wang, Changhui Ye, and Lide Zhang, “Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS: The Role of Mass Diffusion in Vapor-Liquid-Solid Growth”, Nano Lett. Vol. 6, No. 8 1650-1655 (2006).
[30]Jun Zhang and Feihong Jiang, “Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties”, Chem. Phys. Vol. 289, 243-249 (2003).
[31]Jesus M. Velazquez and Sarbajit Banerjee, “Catalytic Growth of Single-Crystalline V2O5 Nanowire Arrays”, Small Vol. 5, 1025-1029 (2009).
[32]R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Appl. Phys. Lett. 4, 89 (1964).
[33]Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons and William E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Sci. Vol. 270, No. 5243 (1995).
[34]顏君乘,“高真空退火處理對氧化釩薄膜磁性與結構的研究”,國立成功大學物理研究所碩士論文 (2005)[35]李冠融,“單晶釩氧化物薄膜的磁性與結構特性”,國立成功大學物理研究所碩士論文 (2007)[36]H. Okamoto, “Desk handbook: phase diagrams for binary alloys”, ASM (2000).
[37]Yuan Ningyi, Li Jinhua and Lin Chenglu, “Valence reduction process from sol–gel V2O5 to VO2 thin films”, Appl. Surf. Sci. Vol. 191, 176-180 (2002).
[38]E. Baba Ali, J. C. Bernede, “Vanadium transition metal oxide films obtained by annealing under room atmosphere of metal layers sequentially deposited”, J. Crystal Growth Vol. 208, 471-481 (2000).
[39]Volker Eyert, “The metal-insulator transitions of VO2: A band theoretical approach”, Ann. Phys. 11, 650-702 (2004).
[40]K. Hermann, A. Chakrabarti, A. Haras, M. Witko, B. Tepper, “Electronic Structure of Vanadium Dioxide: Ab initio Density Functional Theory Studies of Periodic and Local Systems”, Phys. Stat. Sol. 187, 137-149 (2001).
[41]A. I. Ivon, V. R. Kolbunov and I. M. Chernenko, “Stability of Electrical Properties of Vanadium Dioxide Based Ceramics”, J. Euro. Cream. Soc. 19, 1883-1888 (1999).
[42]P. Jin, S. Nakao and S. Tanemura, “Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing”, Thin Solid films 324, 151-158 (1998).
[43]S. Surnev, M. G. Ramsey and F. P. Netzer, “Vanadium oxide surface studies”, Prog. Surf. Sci. Vol. 73, 117-165 (2003).
[44]J. Haber, M. Witko and R. Tokarz, “Vanadium pentoxide I. Structures and properties”, Appl. Cata. A: General Vol. 157, 3-22 (1997).
[45]R. Ramirez, B. Casal, L. Utrera, E. Ruiz-Hitzky, “Oxygen reactivity in vanadium pentoxide: electronic structure and infrared spectroscopy studies”, J. Phys. Chem. 94, 8960-8965 (1990).
[46]M. Benmoussa, E. Ibnouelghazi, A. Bennouna and E. L. Ameziane, “Structural, electrical and optical properties of sputtered vanadium pentoxide thin films”, Thin Solid Films Vol. 265, 22-28 (1995).
[47]S. Surnev, M. G. Ramsey, and F. P. Netzer, “Unusual CO Adsorption Sites on Vanadium Oxide−Pd(111) “Inverse Model Catalyst” Surfaces”, J. Phys. Chem. B 107, 4777-4785 (2003).
[48]J. Livage, “Vanadium pentoxide gels”, Chem. Mater. 3, 578 (1991).
[49]C. Karunakaran and S. Senthilvelan, “Vanadia-catalyzed solar photooxidation of aniline”, J. Colloid Interface Sci. 289, 466-471 (2005).
[50]I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossmeyer, “V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines”, Sens. Actuators B Vol. 106 730-735 (2005).
[51]G. Gu, M. Schmid, P. W. Chiu, A. Minett, J. Fraysse, G. Kim, S. Roth, M. Kozlov, E. Munoz, and R. H. Baughman, “V2O5 nanofibre sheet actuators”, Nat. Mater 2, 316 (2003).
[52]Y. Wang and G. Cao, “Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides”, Chem. Mater. 18, 2787 (2006).
[53]Ming-Cheng Wu and Chi-Shen Lee, “Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport”, Journal of Solid State Chemical (2009).
[54]Katsunori Takahashi, Steven J. Limmer, Ying Wang, Guozhong Cao, “Synthesis and Electrochemial Properties of Single-Crystal V2O5 Nanorod Arrays by Template Based Electrodeposition”, J. Phys. Chem. B Vol. 108, 9795-9800 (2004).
[55]Kinson C. Kam and Anthony K. Cheetham, “Thermochromic VO2 nanorods and other vanadium oxides nanostructures”, Materials Research Bulletin Vol. 41, 1015-1021 (2006).
[56]Jing Li, Zhongxing Su, Bin Yang, Shunli Cai, Zhengping Dong, Jiantai Ma, Rong Li, “A facile and environmentally friendly chemical route for the synthesis of metastable VO2 nanobelts”, J. Phys. Chem. Sol. Vol. 71, 407-411 (2010).
[57]L. I. Vera-Robles, F. U. Naab, A. Campero, J. L. Duggan and F. D. McDaniel, “Metal cations inserted in vanadium-oxide nanotubes”, Nucl. Instr. and Meth. in Phys. Res. B 261, 534–537 (2006).
[58]汪建明,“材料分析”,中國材料科學學會,1998年初版
[59]http://www.nscric.nthu.edu.tw/EM/aemeds/aemeds.html
[60]http://elearning.stut.edu.tw/caster/3/no5/5-1.htm
[61]B. Fultz, J. M. Howe, “Transmission Electron Microscopy and Diffractometry of Materials”, Springer Verlag (2007).
[62]http://140.116.176.21/www/technique/20071112/SEM7000.pdf
[63]M. Demeter, M. Neumann and W. Reichelt, “Mixed-Valence Vanadium Oxides Studied by XPS’’, Sur. Sci. 454-456, 41-44 (2000).
[64]J. Mendialdua, R. Casanova and Y. Barbaux, “XPS studies of V2O5, V6O13, VO2 and V2O3”, J. Elect. Spect. Rel. Phen. 71, 249-261 (1995).
[65]N. V. Hullavarad, S. S. Hullavarad and P. C. Karulkar, “Electrical and Optical Properties of V2O5 Micro-Nano Structures Grown by Direct Vapor Phase Deposition Method”, J. Electrochem. Soc. 155, K84-K89 (2008).
[66]U. Schwingenschloegl and V. Eyert, “ The vanadium Magneli phases VnO2n-1”, Ann. Phys. 13, 475-510 (2004).