跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳建璋
研究生(外文):Chien-Chang Wu
論文名稱:利用化學汽相沉積法合成氧化釩奈米結構及性質分析鑑定之研究
論文名稱(外文):Synthesis and Properties of Vanadium Oxide Nanostructures by Chemical Vapor Deposition Method
指導教授:施漢章
指導教授(外文):Han-Chang Shih
口試委員:曹春暉邱善得
口試委員(外文):Chuen-Huei TsauShan-De Chiou
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:80
中文關鍵詞:奈米線奈米棒化學汽相沉積法五氧化二釩二氧化釩
外文關鍵詞:NanowireNanorodCVDV2O5VO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學汽相沉積法,已成功合成出五氧化二釩奈米棒與二氧化釩奈米線,並使其成長在矽基板上。在五氧化二釩奈米結構的合成上,本研究也探討不同溫度對於成長五氧化二釩奈米結構之影響。
  由掃描式電子顯微鏡觀察顯示二氧化釩直徑約在50-100 nm之間,長度達數十μm。在高溫區五氧化二釩奈米棒直徑約為1-4 μm,長度在數十個μm之間;在低溫區五氧化二釩奈米棒直徑約為100-300 nm之間,長度達數十μm。穿透式電子顯微鏡確認二氧化釩奈米線與五氧化二釩奈米棒均為單晶結構。X光繞射分析顯示五氧化二釩奈米棒為斜方晶系結構,二氧化釩奈米線為單斜晶系結構。藉由能量散佈分析與X光光電子能譜儀對其成分作更進一步之分析。陰極激發光顯示出五氧化二釩奈米棒發光位置在560 nm。電性量測顯示出二氧化釩奈米線電性優於五氧化二釩奈米棒。

In this work, the divanadium pentoxide (V2O5) nanorods and vanadium dioxide (VO2) nanowires have been successfully synthesized on the Si substrates using chemical vapor deposition. In the vanadium pentoxide nanostructures, we also discussed that the effect of temperature for growing vanadium pentoxide nanostructures.
The morphology was analyzed by field emission scanning electron microscope (FESEM). The size of the V2O5 nanorods depends on the temperature region of the quartz tube furnace, that is, at higher temperature, the diameters and lengths are 1-4 μm and several μms, respectively, while at lower temperature, they become 100-300 nm and several μms again. And the size of the VO2 nanowires are 50-100 nm in diameters and several μms in lengths. High resolution transmission electron microscopy (HRTEM) indicated that the V2O5 nanorods and VO2 nanowires all are single-crystalline structure. X-ray diffraction (XRD) indicated that the structure of V2O5 nanorods and VO2 nanowires are orthorhombic and monoclinic, respectively. In addition, the components were analysis by energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Cathodoluminescence (CL) indicated that the V2O5 nanorods have a light emission peak at 560 nm。The electrical properties measuring indicated that the conductance of VO2 nanowires are batter than V2O5 nanorods.

摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 前言 1
1-1 何謂奈米科技 1
1-2 研究動機 3
第二章 文獻回顧 4
2.1 一維奈米材料 4
2.2 一維奈米材料合成方法 5
2.2-1 物理合成方法 5
2.2-2 化學合成方法 6
2.3 一維奈米材料成長機制 10
2.3-1 氣-固(Vapor-Solid, VS)機制 10
2.3-2 氣-液-固(Vapor-Liquid-Solid, VLS)機制 11
2.3-3 氧化物輔助成長(Oxide-Assisted Growth)機制 13
2.3-4 溶液-液-固(Solution-Liquid-Solid)機制 14
2.4 氧化釩的特性與應用 15
2.4-1 二氧化釩結構特性 16
2.4-2 五氧化二釩結構特性 18
第三章 實驗步驟與方法 25
3.1 實驗流程 25
3.2 試片前處理 26
3.3 五氧化二釩奈米結構之實驗過程 26
3.4 二氧化釩奈米結構之實驗過程 27
3.5 分析儀器介紹 30
3.5-1 掃描式電子顯微鏡(SEM) 30
3.5-2 穿透式電子顯微鏡(TEM) 32
3.5-3 能量散佈光譜儀(EDS) 34
3.5-4 X光繞射分析儀(XRD) 35
3.5-5 化學分析電子能譜儀(ESCA ; XPS) 37
3.5-6 陰極激發光分析(CL) 39
第四章 結果與討論 41
4.1 五氧化二釩奈米棒之合成 41
4.1-1 掃描式電子顯微鏡分析 41
4.1-2 X光繞射分析 44
4.1-3 穿透式電子顯微鏡分析 45
4.1-4 能量散佈光譜分析 47
4.1-5 基板溫度對於成長五氧化二釩奈米棒之影響 48
4.1-6 成長溫度對於合成五氧化二釩奈米結構之影響 50
4.1-7 X光光電子能譜分析 56
4.2 二氧化釩奈米線之合成 59
4.2-1 掃描式電子顯微鏡分析 59
4.2-2 X光繞射分析 61
4.3-3 穿透式電子顯微鏡分析 62
4.2-4 能量散佈光譜分析 64
4.2-5 X光光電子能譜分析 65
4.3 光學性質分析 68
4.4 電性量測 69
第五章 結論 71
第六章 未來展望 72
第七章 參考文獻 73

[1]http://www.me.tnu.edu.tw/~me022/lab/nanomater.htm
[2]蔡信行,孫光中,“奈米科技導論”,新文京開發出版股份有限公司93年初版
[3]Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties”, J. Phys. Chem. 95, 525-532 (1991).
[4]M. V. Rama Krishna, R. A. Friesner, “Quantum confinement effects in semiconductor clusters”, J. Chem. Phys. 95, 8309 (1991).
[5]T. Ohgi and D. Fujita, “Consistent size dependency of core-level binding energy shifts and single-electron tunneling effects in supported gold nanoclusters”, Phys. Rev. B 66, 115410 (2002).
[6]R. C. Jaklevic, John Lambe, A. H. Silver, and J. E. Mercereau, “Quantum Interference Effects in Josephson Tunneling”, Phys. Rev. Lett. 12, 159–160 (1964).
[7]F. Bodker, S. Morup and S. Linderoth, “Surface effects in metallic iron nanoparticles”, Phys. Rev. Lett. 72 (1994).
[8]Keng-Che Cheng, Fu-Rong Chen and Ji-Jung Kai, “V2O5 nanowires as a functional material for electrochromic device”, Sol. Energy Mater. Sol. Cell. 90, 1156-1165 (2006).
[9]Shigeru Nishio and Masato Kakihana, “Evidence for Visible Light Photochromism of V2O5”, Chem. Mater. 3730–3733 (2002).
[10]Mi Ra Min, Jae Hoon Kim and Eun Kyu Kim, Yong Kwan Kim and Jeong Sook Ha, Kyu Tae Kim “Electrical Properties of V2O5 (Vanadium Pentoxide) Nanowire”, J. Korean Phys. Soc. Vol. 49, No.3 (2006).
[11]J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth and M. Burghard, “Electrical Transport Through Individual Vanadium Pentoxide Nanowires”, Adv. Mater Vol. 16, 420-424 (2000).
[12]Kyu Won Lee, Hyocheon Kweon, Jitae Park, and Cheol Eui Lee, “Charge and spin dynamics in VO2 nanorods”, Appl. Phys. Lett. Vol. 94, 233111 (2009).
[13]Zu Rong Dai, Zheng Wei Pan, and Zhong L. Wang, “Novel Nanostructure of Functional Oxides Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13, No. 1,9 (2003).
[14]王健懿,“Al-Si合金粉末製備奈米線之機制研究”,國立清華大學材料科學工程研究所碩士論文 (2005)
[15]S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature 354, 56-58 (1991).
[16]Nasreen G. Chopra, R. J. Luyken, K. Cherrey, Vincent H. Crespi, Marvin L. Cohen, Steven G. Louie and A. Zettl, “Boron Nitride Nanotubes”, Phys. Chem. Vol. 269, No.5226 (1995).
[17]Maja Remskar, Zora Skraba, Pierre Stadelmann, and Francis Levy, “Structural Stabilization of New Compounds: MoS2 and WS2 Micro- and Nanotubes Alloyed with Gold and Silver”, Adv. Mater. 12, 11 (2000).
[18]Hong-Ming Lin, “奈米材料合成技術”, Department of Materials Engineering Tatung University ; http://nano.mse.ttu.edu.tw/html/doc/Class01_Intro/3.pdf
[19]林聖紘,“藉微波電漿輔助化學氣相沉積系統合成氧化鈦奈米材料與特性分析”,國立清華大學材料科學工程研究所碩士論文 (2006)
[20]Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Yadong Yin, Franklin Kim and Haoquan Yan, “One-Dimensional Nanostructures Synthesis Characterization and Application”, Adv. Mater. 15, 5 (2003).
[21]Hong-Ming Lin, “奈米材料合成技術”, Department of Materials Engineering Tatung University ; http://nano.mse.ttu.edu.tw/html/doc/Class02_produ/3.pdf
[22]高逢時,科學發展2005年2月,386期,67-71.
[23]超微粒子材料技術,莊萬發編撰,復漢出版社印行,1995年
[24]B. Lewis, “The growth of crystals of low supersaturation: I. Theory”, J. Crystal Growth, Vol. 21, 29-39 (1974).
[25]R. S. Wagner, W. C. Ellis, “Vapor-Solid-Growth Mechamism of Single Crystal Growth”, Appl. Phys. Lett. 4, 89 (1964).
[26]Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. 13, No. 2 (2001).
[27]Yiqing Chen, Xuefeng Cui, Kun Zhang, Dengyu Pan, Shuyuan Zhang, Bing Wang and J. G. Hou, “Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation”, Chem. Phys. Lett. Vol. 369, 16-20 (2003).
[28]B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang and D. P. Yu, “Field-emission properties of TiO2 nanowire arrays”, Appl. Phys. Vol. 38, 1152 (2005).
[29]Yufeng Hao, Guowen Meng, Zhong Lin Wang, Changhui Ye, and Lide Zhang, “Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS: The Role of Mass Diffusion in Vapor-Liquid-Solid Growth”, Nano Lett. Vol. 6, No. 8 1650-1655 (2006).
[30]Jun Zhang and Feihong Jiang, “Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties”, Chem. Phys. Vol. 289, 243-249 (2003).
[31]Jesus M. Velazquez and Sarbajit Banerjee, “Catalytic Growth of Single-Crystalline V2O5 Nanowire Arrays”, Small Vol. 5, 1025-1029 (2009).
[32]R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Appl. Phys. Lett. 4, 89 (1964).
[33]Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons and William E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Sci. Vol. 270, No. 5243 (1995).
[34]顏君乘,“高真空退火處理對氧化釩薄膜磁性與結構的研究”,國立成功大學物理研究所碩士論文 (2005)
[35]李冠融,“單晶釩氧化物薄膜的磁性與結構特性”,國立成功大學物理研究所碩士論文 (2007)
[36]H. Okamoto, “Desk handbook: phase diagrams for binary alloys”, ASM (2000).
[37]Yuan Ningyi, Li Jinhua and Lin Chenglu, “Valence reduction process from sol–gel V2O5 to VO2 thin films”, Appl. Surf. Sci. Vol. 191, 176-180 (2002).
[38]E. Baba Ali, J. C. Bernede, “Vanadium transition metal oxide films obtained by annealing under room atmosphere of metal layers sequentially deposited”, J. Crystal Growth Vol. 208, 471-481 (2000).
[39]Volker Eyert, “The metal-insulator transitions of VO2: A band theoretical approach”, Ann. Phys. 11, 650-702 (2004).
[40]K. Hermann, A. Chakrabarti, A. Haras, M. Witko, B. Tepper, “Electronic Structure of Vanadium Dioxide: Ab initio Density Functional Theory Studies of Periodic and Local Systems”, Phys. Stat. Sol. 187, 137-149 (2001).
[41]A. I. Ivon, V. R. Kolbunov and I. M. Chernenko, “Stability of Electrical Properties of Vanadium Dioxide Based Ceramics”, J. Euro. Cream. Soc. 19, 1883-1888 (1999).
[42]P. Jin, S. Nakao and S. Tanemura, “Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing”, Thin Solid films 324, 151-158 (1998).
[43]S. Surnev, M. G. Ramsey and F. P. Netzer, “Vanadium oxide surface studies”, Prog. Surf. Sci. Vol. 73, 117-165 (2003).
[44]J. Haber, M. Witko and R. Tokarz, “Vanadium pentoxide I. Structures and properties”, Appl. Cata. A: General Vol. 157, 3-22 (1997).
[45]R. Ramirez, B. Casal, L. Utrera, E. Ruiz-Hitzky, “Oxygen reactivity in vanadium pentoxide: electronic structure and infrared spectroscopy studies”, J. Phys. Chem. 94, 8960-8965 (1990).
[46]M. Benmoussa, E. Ibnouelghazi, A. Bennouna and E. L. Ameziane, “Structural, electrical and optical properties of sputtered vanadium pentoxide thin films”, Thin Solid Films Vol. 265, 22-28 (1995).
[47]S. Surnev, M. G. Ramsey, and F. P. Netzer, “Unusual CO Adsorption Sites on Vanadium Oxide−Pd(111) “Inverse Model Catalyst” Surfaces”, J. Phys. Chem. B 107, 4777-4785 (2003).
[48]J. Livage, “Vanadium pentoxide gels”, Chem. Mater. 3, 578 (1991).
[49]C. Karunakaran and S. Senthilvelan, “Vanadia-catalyzed solar photooxidation of aniline”, J. Colloid Interface Sci. 289, 466-471 (2005).
[50]I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossmeyer, “V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines”, Sens. Actuators B Vol. 106 730-735 (2005).
[51]G. Gu, M. Schmid, P. W. Chiu, A. Minett, J. Fraysse, G. Kim, S. Roth, M. Kozlov, E. Munoz, and R. H. Baughman, “V2O5 nanofibre sheet actuators”, Nat. Mater 2, 316 (2003).
[52]Y. Wang and G. Cao, “Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides”, Chem. Mater. 18, 2787 (2006).
[53]Ming-Cheng Wu and Chi-Shen Lee, “Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport”, Journal of Solid State Chemical (2009).
[54]Katsunori Takahashi, Steven J. Limmer, Ying Wang, Guozhong Cao, “Synthesis and Electrochemial Properties of Single-Crystal V2O5 Nanorod Arrays by Template Based Electrodeposition”, J. Phys. Chem. B Vol. 108, 9795-9800 (2004).
[55]Kinson C. Kam and Anthony K. Cheetham, “Thermochromic VO2 nanorods and other vanadium oxides nanostructures”, Materials Research Bulletin Vol. 41, 1015-1021 (2006).
[56]Jing Li, Zhongxing Su, Bin Yang, Shunli Cai, Zhengping Dong, Jiantai Ma, Rong Li, “A facile and environmentally friendly chemical route for the synthesis of metastable VO2 nanobelts”, J. Phys. Chem. Sol. Vol. 71, 407-411 (2010).
[57]L. I. Vera-Robles, F. U. Naab, A. Campero, J. L. Duggan and F. D. McDaniel, “Metal cations inserted in vanadium-oxide nanotubes”, Nucl. Instr. and Meth. in Phys. Res. B 261, 534–537 (2006).
[58]汪建明,“材料分析”,中國材料科學學會,1998年初版
[59]http://www.nscric.nthu.edu.tw/EM/aemeds/aemeds.html
[60]http://elearning.stut.edu.tw/caster/3/no5/5-1.htm
[61]B. Fultz, J. M. Howe, “Transmission Electron Microscopy and Diffractometry of Materials”, Springer Verlag (2007).
[62]http://140.116.176.21/www/technique/20071112/SEM7000.pdf
[63]M. Demeter, M. Neumann and W. Reichelt, “Mixed-Valence Vanadium Oxides Studied by XPS’’, Sur. Sci. 454-456, 41-44 (2000).
[64]J. Mendialdua, R. Casanova and Y. Barbaux, “XPS studies of V2O5, V6O13, VO2 and V2O3”, J. Elect. Spect. Rel. Phen. 71, 249-261 (1995).
[65]N. V. Hullavarad, S. S. Hullavarad and P. C. Karulkar, “Electrical and Optical Properties of V2O5 Micro-Nano Structures Grown by Direct Vapor Phase Deposition Method”, J. Electrochem. Soc. 155, K84-K89 (2008).
[66]U. Schwingenschloegl and V. Eyert, “ The vanadium Magneli phases VnO2n-1”, Ann. Phys. 13, 475-510 (2004).

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊