跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪祥耀
研究生(外文):Siang-yao Hong
論文名稱:鍵結有Calix[4]arene之矽膠的應用研究
論文名稱(外文):The Studies in the Application of the Calix[4]arene Grafted Silica Gel
指導教授:林立錦
指導教授(外文):Lee-gin Lin
口試委員:劉清揚周大新
學位類別:碩士
校院名稱:中國文化大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:91
中文關鍵詞:矽膠
外文關鍵詞:calix[4]arenesilica gel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Calixarenes是一種酚和甲醛進行聚合反應的環狀聚合物,由於這類分子具有分子內中空構型,故可以嵌合一些小型的有機分子或金屬離子,而形成 " 主-客化合物 ",而此種特性可應用於酵素模擬、離子分離及微量金屬檢測的研究;本論文主要研究目的為先將 calix[4]arene 鍵結於矽膠上,以製備出 calix[4]arene grafted silica gel,再進一步的研究其對金屬離子之選擇性,期望發展出能進行金屬分離的矽膠產物。

利用對位第三丁基取代酚和甲醛在鹼性條件的催化下,可聚合成黃綠色的聚合物,我們稱此種化合物為前驅物。此前驅物可以在二苯醚的迴流下,被轉換為 p-tert-butylcalix[4]arene;然後此一環狀聚合物的對位三級丁基可利用三氯化鋁進行反向的 Friedel-Crafts 反應,以減除對位三級丁基取代基進而得到對位無取代之 calix[4]arene。

利用標準的四步驟製程可以將 calix[4]arene 鍵結至矽膠上。首先利用 3-aminopropyl triethoxy silane 可將 3-aminopropyl 的官能基團鍵結於矽膠上,得到化合物 aminopropyl silica gel;然後 aminopropyl silica gel 可和 p-nitrobenzoyl chloride 作用而引進硝基苯官能團;接著使用 sodium dithionite 來還原硝基苯官能團生成苯胺官能基團;最後再利用偶氮偶合反應和 calix[4]arene 作用,便得到紅色的calix[4]arene grafted silica gel化合物。此一 calix[4]arene grafted silica gel 化合物再經過熱重分析儀 (TGA) 分析後,可推算出在 1.00 克的 calix[4]arene grafted silica gel 以偶氮基鍵結之 calix[4]arene 的最大莫耳量為4.341×10-4 莫耳。此數據可以讓我們在利用 calix[4]arene grafted silica gel 進行檢測離子時,以矽膠作為對照組,來判定出所能吸附離子含量的多寡。

本論文中,利用火燄式原子吸收光譜儀和氫化式原子吸收光譜儀,測試 calix[4]arene grafted silica gel 在不同酸鹼度條件下,吸附銅離子和砷離子的能力。而如將 calix[4]arene grafted silica gel 吸附之離子的數量,扣除掉矽膠對照組的吸附量,應即為以偶氮鍵結在矽膠之 calix[4]arene 對離子的吸附能力。

實驗數據發現經由鹼處理之 calix[4]arene grafted silica gel 經扣除掉矽膠對照組後,與銅金屬離子之莫耳數關係約為 1:0.012,即是每一莫耳的 grafted-calix[4]arene 可吸附 0.012 莫耳的銅;但在砷離子的檢測數據中,可發現中性及鹼性條件下均具有對砷離子的吸附能力,並且由於 silica gel 對照組對砷離子的吸附有較大誤差的影響,而使得 calix[4]arene grafted silica gel 對砷離子的吸附能力仍無法確認。

Calixarenes are cyclic oligomers of p-substituted phenols and formaldehyde, the structure of the calixarene are able to include small organic molecules or metal ions within molecular cavities to from the “host-guest complexes”. This phenomenon has been proposed in the research area of micro-analysis detection devices, ion separation, and enzyme-mimic studies. The main purpose of this thesis is to develop a standard procedure for grafting the calix[4]arene onto silica gel, and the grafted silica gel was then used as a stationary phase for the ion separation.
In the presence of a base, p-tert-butylphenol and formaldehyde was polymerized to form an yellowish precursor. Refluxing of this precursor in diphenyl ether for two hours yielded the p-tert-butylcalix[4]arene. The p-tert-butyl groups were then removed by AlCl3-catalyzed reverse Friedel-Crafts reaction to give parent calix[4]arene.
The calix[4]arene grafted silica gel was prepared in a four-step procedure. At the first, the 3-aminopropyl group was introduced by reacting 3-aminopropyltriethoxysilane with silica gel; and the resulting aminopropyl silica gel (APSG) was further treated with p-nitrobenzoyl chloride to supply a nitro moiety. The nitro group was then reduced by sodium dithionite, and the diazotization of the resulting aniline moiety followed with diazo-coupling reaction gave the red calix[4]arene grafted silica gel.
The thermal gravimetric analysis (TGA) was applied to the grafted silica gel to determine the composition of the organic portion. The TGA results indicated that the organic portion was in the range of 26.61% for the calix[4]arene grafted silica gel, which is equivalent to a maximum of 4.348×10-4 mmole of calix[4]arene per gram of grafted silica gel .
The preliminary ionic extraction resulted for Cu2+ indicated that calix[4]arene grafted silica gel extracted 0.012 mole excess amount of Cu2+ for each mole of grafted calix[4]arene. However, the result of extraction of As3+ by calix[4]arene grafted silica gel was inconclusive.

摘要............................................................I

Abstract .....................................................III

目錄 ...........................................................V

圖目錄 .......................................................VIII

流程目錄 .......................................................XI

表目錄 .......................................................XIII

第一章 Calixarenes 的簡介
1-1 Calixarenes 的歷史 .........................................1
1-2 Calixarenes 的命名 .........................................5

第二章 Calixarenes 的合成
2-1 一步合成法..................................................6
2-2 多步合成法..................................................8
2-3 官能基化法 ................................................14

第三章 Calixarenes 的理論及應用
3-1 Calixarenes的組構異構物.....................................19
3-2 Calixarenes的應用..........................................24

第四章 Calix[4]arene grafted silica gel 之合成研究
4-1 Calix[4]arene 的製備 ......................................43
4-2 N-(p-Aminobenzoyl)-aminopropyl silica gel 的合成 ..........45
4-3 Calix[4]arene grafted silica gel 的合成....................46

第五章 Calix[4]arene grafted silica gel 的性質分析研究
5-1 Calix[4]arene grafted silica gel 的 TGA 分析...............48
5-2 Calix[4]arene grafted silica gel 與金屬離子做鍵結吸附
的火焰式原子吸收原子儀分析........................................52

結論..........................................................58

實驗步驟 .......................................................59

參考資料 .......................................................68

1.Baeyer, A., Ber. Dtsch. Chem. Ges., 1872, 280.

2.Baekeland, L. H., Indust. Eng. Chem., 1913, 5, 506.

3.Zinke, A.; Kretz, R.; Leggewie, E.; Hossinger, K., Monatsh. Chem., 1952, 83, 1213

4.Cornforth, J. W.; Hart, P. D.; Nicholls, G. A.; Rees, R. J. W.; Stock, J. A., Brit. J. Pharmacol., 1955, 10, 73.

5.Kammerer, H.; Happel, G.; Caesar, F., Makromol. Chem., 1972, 162, 179.

6.Munch, J. H., Makromol. Chem., 1977, 178, 69.

7.Gutsche, C. D.; Muthukrishnan, R., J. Org. Chem., 1978, 43, 4905.

8.Andreetti, G. D.; Ungaro, R.; Pochini, A., J. Chem. Soc. Chem. Commun., 1979, 1005.

9.Shinkai, S.; Mori, S.; Tsubaki, T.; Sone, T.; Manabe, O., Tetrahedron Lett., 1984, 25, 5315.

10.(a) Zinke, A.; Ziegler, E., Ber. Chem., 1941, 74, 1729. (b) Zinke, A.; Ziegler, E., Ber. Chem., 1944, 77B, 264. (c) Zinke, A.; Zigeuner, G.; Hossinger, K.; Hoffman, G., Monatsh. Chem., 1948, 79, 438. (d) Zinke, A.; Ott, R.; Garrana, H., Monatsh. Chem., 1958, 89, 1. (e) Zinke, A., J. Appli. Chem., 1951, 1, 135.

11.Patrick, T. B.; Egan, P.A., J. Org. Chem., 1977, 42, 382.

12.Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R., J. Am. Chem. Soc., 1981, 103, 3782.

13.Gutsche, C. D.; Iqbal, M., Org. Synth., 1989, 68, 234.

14.Ninagawa, A.; Matsuda, H., Makromol. Chem. Rapid Comm., 1982, 3, 65.

15.Nakamoto, Y.; Ishida, S., Makromol. Chem. Rapid Comm., 1982, 3, 705.

16.(a) Hayes, B. T.; Hunter, R. F., Chem. Ind., 1956, 193. (b) Hayes, B. T.; Hunter, R. F., J. Applied Chem., 1958, 8, 743.

17.(a) Happel, G.; Mathiasch, B.; Kammerer, H., Makromol. Chem., 1975, 176, 3317. (b) Kammerer, H.; Happel, G., Makromol. Chem., 1978, 179, 1199. (c) Kammerer, H., Monatsh. Chem., 1981, 112, 759.

18. Bohmer, V.; Chhim, P.; Kammerer, H., Makromol. Chem., 1979, 180, 2503.

19.(a) Hakimelahi, G. H.; Moshfegh, A. A., Helv. Chim. Acta, 1981, 64, 599. (b) Moshfegh, A. A.; Mazandarani, B.; Nahid, A.; Hakimelahi, G. H., Helv. Chim. Acta, 1982, 65, 1229. (c) Moshfegh, A. A.; Baladi, E.; Radnia, L.; Afsanch, S. L.; Hosseini, A. S.; Tofigh, S.; Hakimelahi, G. H., Helv. Chim. Acta, 1982, 65, 1264.

20.No, K. H.; Gutsche, C. D., J. Org. Chem., 1982, 47, 2713.

21.Gutsche, C. D.; Alam, I., Tetrahedron, 1988, 44, 4689.

22.Gutsche, C. D.; Levine, J. A., J. Am. Chem. Soc., 1982, 104, 2652.

23.Bohmer, V.; Rathay, D.; Kammerer, H., Org. Prep. Proc. Int., 1978, 10, 113.

24.(a) Shinkai, S.; Tsubaki, T.; Sone, T.; Manabe, O., Tetrahedron Lett., 1985, 26, 3343. (b) Shinkai, S.; Araki, K.; Tsubaki, T.; Arimur, T.; Manabe, O., J. Chem. Soc. Perkin Trans. 1, 1987, 2297. (c) Arimur, T.; Shinkai, S.; Matsuda, T.; Hirata, Y.; Satoh, H.; Manabe, O., Bull. Chem. Soc. Jpn., 1988, 61, 3733. (d) Shinkai, S.; Arimura, T.; Araki, K.; Kawabata, H., J. Chem. Soc. Perkin Trans. 1, 1989, 2039. (e) Arimura, T.; Nagasaki, T.; Shinkai, S.; Matsuda, T., J. Org. Chem., 1989, 54, 3766.

25.Rosik, L. O., Ph. D. Thesis, Washington University, St. Louis, 1986, 29.

26.Gutsche, C. D.; Pagoria, P. F., J. Org. Chem., 1985, 50, 5795.

27.Gutsche, C. D.; Reddy, P. A., J. Org. Chem., 1993, 58, 3245.

28.(a) Helgeson, R. C.; Mazaleyrat, J. P.; Cram, D. J., J. Am. Chem. Soc., 1981, 103, 3929. (b) Moran, J. R.; Karbach, S.; Cram, D. J., J. Am. Chem.Soc., 1982, 104, 5826. (c) Cram, D. J., Science, 1983, 219, 1177.

29.Gutsche, C. D.; Dhawan, B.; Levine, J. A.; No, K. H.; Bauer, L,. J, Tetrahedron, 1983, 39, 409.

30.Bocchi, V.; Foina, D.; Pochini, A.; Ungaro, R., Tetrahedron, 1982, 38, 373.

31.Cram D. J.; Cram, J. M., Science., 1974, 183, 803.

32.Bauer, L. J.; Gutsche, C. D., J. Am. Chem. Soc., 1987, 107, 6063.

33.Shinkai, S., J. Incl. Phenom., 1989, 7, 193.

34.Gutsche, C. D.; Alam, I.; Iqbal, M.; Mangiafico, T.; Nam, K. C.; Rogers, J.; See, K. A., J. Incl. Phenom., 1989, 7, 61.

35.Molenveld, P.; Emgbersen, J. F. C.; Kooijman, H.; Spek, A. L.;
Reinhoudt,D. N., J. Am. Chem. Soc., 1998, 120, 6726.

36.Izatt, R. M.; Lamb, J. D.; Hawkins, R. T.; Brown, P. R.; Izatt, S. R.; Christensen, J. J., J. Am. Chem. Soc., 1983, 105, 1782

37.Zhen-lin Zhong; Yuan-yin Chen; Xue-ran Lu, Tetrahedron Lett., 1995, 36, 6735.

38. Benco,J. S.; Nienabar, H. A.; Dennen, K.; McGimpsey, W. G.,Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152, 33.

39. Rocco Ungaro; Alessandro Casnati; Franco Ugozzol; Andrea Pochini; Jean-Francois Dozol; Clement Hill; Helene Rouquette, Angew Chem Int Engl, 1994, 32, 1506

40.Alessandro C.; Andrea P.; Rocco U.; Franco U.; Francoise A.; Stefano F.; Marie-Jose S.; Richard J. M. Egberink; Feike de J.; David N. R.; J. Am. Chem. Soc. 1995, 117, 2767

41.Nomura, E.; Taniguchi, H.; Tamura, S., Chem. Lett., 1989, 1125.

42.Shimizu, H.; Iwamoto, K; Fujimoto, K; Shinkai, S., Chem. Lett, 1991, 2147.

43.Kim, N. Y.; Chang, S.-K., J. Org. Chem, 1998, 63, 2362.

44.Tao Zhao, X. Hu, J. Cheng, X. Lu, Analytica Chimica Acta, 1998, 358, 263

45.(a) Shinkai, S.; Koreishi, H.; Ueda, K.; Manabe, O., J. Chem. Soc. Chem. Commun., 1986, 233. (b) Shinkai, S.; Koreishi, H.; Ueda, K.; Arimura, T.; Manabe, O., J. Am. Chem. Soc., 1987, 109, 6371. (c) Shinkai, S.; Kawaguchi, H.; Manabe, O., J. Polym. Sci. Polym. Lett., 1988, 26, 391. (d) Shinkai, S.; Shiramama, Y.; Satoh, H.; Manabe, O., J. Chem. Soc. Perkin Trans. 2, 1989, 1167.

46.Wanlapa, A.; Agnes, H.; Zouhair, A.; Leila B.; Jacques, V.; Maurice, L., Tetrahedron Lett., 1999, 40, 6389.

47.V.K. Jain, A. Handa, R. Pandya, P. Shrivastav, Y.K. Agrawal, Reactive & Functional Polymers, 2002, 51, 101

48.David M. Duncan, J.S., Cockayne, Sensors and Actuators B, 2001, 73, 228

49. Duncan, D. M.; Cockayne, J. S.,Sensors and Actuators B, 2001, 73, 228

50. J. M. Hill, Journal of Chromatography, 1973, 455

51.A. Simon; T. Cohen-Bouhacina; C. Baquery, Journal of Colloid and Interface Science, 2002, 251, 278

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top