跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳福寶
研究生(外文):Fu-Bao Chen
論文名稱:酸-甲醇處理玉米澱粉之流變性質
論文名稱(外文):Rheological characteristics of acid-methanol-treated corn starches
指導教授:張永和張永和引用關係
指導教授(外文):Yung-ho Chang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:124
中文關鍵詞:酸醇處理流變熱水可溶成分澱粉
外文關鍵詞:acid-methanol-treatementrheologicalhot-water-soluble componentstarch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對三種不同直鏈澱粉含量之糯性、一般及Hylon V 玉米澱粉 (直鏈澱粉含量分別為<0.1%、25.7%及50.1%),於含0.36%鹽酸之甲醇液、25 oC 下處理1-168 h 進行酸醇處理,製備不同分子量之酸醇處理澱粉,以探討不同分子大小之玉米澱粉對流變性質之影響。結果顯示,經酸醇處理後澱粉顆粒回收率高達九成以上,其平均粒徑無明顯改變,直鏈澱粉含量則相近於天然澱粉者。一般玉米及Hylon V 澱粉於酸醇處理部分降解後其澱粉預膨潤之顆粒外觀及緊密堆積濃度 (close packing concentration, C*)相近於天然澱粉者,而糯玉米澱粉其澱粉顆粒隨著酸醇處理時間增加而逐漸變小,使得C*上升。
三種玉米澱粉呈現三種不同的糊化過程變化,但經酸醇處理後其澱粉糊化過程與天然澱粉者相近。糯性及一般玉米澱粉之糊化過程流變特性發現貯存模數最大值 (storage modulus of max, G''max)隨著酸醇處理而逐漸下降,Hylon V 澱粉則發現酸醇處理1 h 之樣品 (AMT1h)之G''max 高於天然澱粉,顯示酸醇處理使得糯性及一般玉米澱粉顆粒堅實度下降,因此於糊化過程中澱粉顆粒易相互堆積擠壓而造成顆粒破裂;但Hylon V 澱粉於1h 酸醇處理後,澱粉顆粒部分鍵結打斷,
故易於膨潤。
回凝過程中糯玉米澱粉於25 oC 下之貯存模數 (storage modulus of 25 oC, G''25℃)隨著酸醇處理時間增加而下降,而一般玉米澱粉則於酸醇處理部分降解後,其G''25℃高於天然澱粉。以掃描式電子顯微鏡觀察膠體結構發現糯玉米澱粉經酸醇處理後其膠體外觀與天然澱粉者相似,一般玉米及Hylon V 澱粉經酸醇處理部分降解後其膠體結構有明顯的片狀物質產生,而後隨酸醇處理時間增加,片狀物質則逐漸變小。
糯玉米澱粉直鏈澱粉含量甚低致使澱粉於回凝過程中缺乏直鏈澱粉網狀結構之連續相基質,且顆粒型態無法維持,所以經酸醇處理後於膨潤過程中易破碎。而一般玉米澱粉則於酸醇處理部分降解後其G''25℃上升,可能是因為於短時間酸醇處理之澱粉其膨潤性與天然澱粉相似,而其熱水可溶成分的直鏈澱粉分子則較大,因此利於澱粉網狀結構之形成使得G''25℃上升。
Corn starch with different amylose contents (<0.1%, 25.7% and 50.1%, respectively) were treated in methanol containing 0.36% HCl at 25 oC for 1-168 h to prepare starches with different molecular sizes. Effect of molecular sizes on rheological properites was studied. Results showed that average granule size and amylose content of starch did not show obvious change after
acid-methanol-treatment (AMT) and the recovery of starch granules was higher than 90%, while the amylose content of AMT starch was comparable to the counterpart native starch. Normal corn and Hylon V starches with short duration of AMT had close packing concentration (C*) similar to their native counterparts. The C* of
waxy corn starch increased with increasing duration of AMT.
Three corn starches showed different gelatinization behaviors during temperature sweep on rheometer. However the behavior of AMT corn starches were similar to the native counterparts. During heating the storage modulus (G''max) of waxy and normal corn starches decreased with increasing duration of AMT. This can be attributed to the reduction in granule rigidity of waxy and normal
corn starches on AMT. Hylon V starch with AMT for AMT1h showed higher G''max than the native counterpart which could be due to breakage of glycosidic linkages.
The storage modulus measured at 25 oC (G''25℃) of waxy corn starch decreased with increasing duration of AMT during aging. AMT normal corn starch showed higher G''25 ℃ than the native counterpart when duration of AMT was less than 24 h.
Waxy corn starch gels showed lackness of continuous phase (amylase matrix) during retrogradation process as observed in their behaviors on rheometer and the pre-swelling granule of waxy corn starch with AMT was fragmented. Hot water soluble components for normal corn starch with AMT for less than 24 h and Hylon V starch with AMT for less than 12 h were higher than their native counterparts which was confirmed their G''25℃ values during aging.Therefore better gel network structure formation were found for the gels formed by these structure.
中文摘要
英文摘要
目 錄.................................................... I
圖 目 錄................................................ III
表 目 錄......................................... .........V附 錄.....................................................VI
前 言.................................................... 1
文 獻 回 顧............................................... 3
一、澱粉組成及結構......................................... 3
二、澱粉之糊化............................................ 6
三、澱粉之回凝與凝膠....................................... 9
(一) 直鏈澱粉之凝膠....................................... 11
(二) 支鏈澱粉之凝膠....................................... 12
(三) 直、支鏈澱粉混合系統之凝膠............................. 13
(四) 澱粉顆粒系統之凝膠.................................... 14
四、酸修飾澱粉............................................ 23
五、酸降解對澱粉理化性質之影響.............................. 26
(一) 分子量.............................................. 26
(二) 流變性質............................................ 27
材 料 與 方 法............................................ 31
一、天然澱粉.............................................. 31
二、酸醇澱粉.............................................. 31
三、理化性質.............................................. 31
(一) 一般成分分析......................................... 31
(二) 粒徑分布............................................ 32
(四) 直鏈澱粉含量........................................ 32
(五) 分子量分布.......................................... 33
(六) 鏈長分布............................................ 34
(七) 糊化熱性質.......................................... 36
(八) 溶解度及緊密堆積濃度................................. 36
(九) 顆粒外觀............................................ 37
(十) 熱水可溶澱粉之鏈長分布................................ 37
(十一) 流變性質.......................................... 39
(十二) 澱粉膠微觀結構..................................... 39
(十三) 質地剖面分析....................................... 40
(十四) 糊透光度.......................................... 40
結 果 與 討 論............................................ 41
一、 澱粉回收率、平均粒徑、碘親合力、與碘結合之最大吸收
波長及直鏈澱粉含量.................................... 41
二、 分子量分布........................................... 43
三、 鏈長分布............................................. 47
四、 糊化熱性質........................................... 50
五、 溶解度.............................................. 53
六、 顆粒外觀............................................. 57
七、 熱水可溶澱粉之鏈長分布................................. 62
八、 糊化過程之流變性質.................................... 66
九、 分子量與貯存模數最大值下降百分比之關係.................. 70
十、 回凝過程之流變性質.................................... 73
十一、 澱粉膠體外觀....................................... 79
十二、 質地剖面分析....................................... 84
十三、 糊透光度.......................................... 86
結 論................................................... 89
參 考 文 獻.............................................. 91
答 客 問................................................ 107
附 錄................................................... 110
蔡玫琳。1997。澱粉顆粒及其分子之成糊行為。台灣大學食品科技
研究所博士論文。
AACC. 2000. Approved Methods of the American Association of
Cereal Chemists. 10th ed. American Association of Cereal
Chemists Inc., St. Paul, MN.
Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF. 1988. The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33(3): 306-311.
Baczkowich M, Tomasik P. 1989. Solvent effect on starch matrix. I. Nonextrathermodynamic considerations. Starch 41(12): 449-452.
Bagley EB, Christiason DD. 1982. Sweling capacity of starch and its relationship to suspension viscosity-effect of cooking time, temperature and concentration. J Texture Stud 13(1): 115-126.
Bank B, Greenwood CT. 1975. Starch and Its Components,
Edinburgh University Press. Edinburgh.
BeMiller JN. 1964. Iodimetric determination of amylose in Methods in Carbohydrate Chemistry Vol. IV, Whistler RL, Smith RJ, BeMiller JN, Wolfrom ML (Eds.). Academic Press, New York, NY. pp. 165-168.
Biliaderis CG, Zawistowski J. 1990. Viscoelastic behavior of aging starch gels: Effects of concentration, temperature, and starch hydrolysates on network properties. Cereal Chem 67(3): 240-246.
Brownsey GJ, Eills HS, Ridout MJ, Ring SG. 1987. Elasticity and failure in composite gels. J Rheol 31(8): 635-649.
Cameron DK, Wang YJ, Moldenhauer KA. 2007. Comparison of
starch physicochemical properties from medium-grain rice
cultivars grown in California and Arkansas. Starch 59(12):
600-608.
Chamberlain EK, Rao MA. 1999. Rhelolgical properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydr Polym 40(4): 251-260.
Chang YH, Lin JH, Chang SY. 2006. Physicochemical
properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocoll 20(2-3): 332-339.
Chang YH, Lin JH, Lii CY. 2004. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydr Polym 57(1): 89-96.
Chrastil J. 1987. Improved colorimetric determination of amylose in starches or flours. Carbohydr Res 159(1): 154-158.
Chung HJ, Liu Q. 2009. Impact of molecular structure of
amylopectin and amylose on amylose chain association
during cooling. Carbohydr Polym 77(4): 807-815.
Clark AH, Gidley MJ, Richardson RK, Ross-Murphy SB. 1989.
Rheological studies of aqueous amylose gels: the effect of
chain length and concentration on gel modulus. Macromolecules 22(1): 346-351.
Clark AH. 1992. Gels and gelling. In physical Chemistry of Foods, H. G. Schwartzberg and R. W. Hartel (Ed), p.263-305. Marcel Dekker, Inc., New York, NY.
Craig SAS, Maningat CG, Scib PA, Hosency RC. 1989. Starch
paste clarity. Cereal Chem 66(3): 173-182.
DeMan JM. 1990. Carbohydrates in Principles of Food Chemistry, 2nd ed, DeMan JM (Ed.). Van Nostrand Reinhold, New York, NY. pp. 143-82.
Dong HZ, Hou HX, Liu CF, Zhang H. 2008. Relationships between some physicochemical properties of starches from maize cultivars grown in east china. Starch 60(6): 305-314.
Doublier JL, Llamas G, Le Meur M. 1987. A rheological
investigation of cereal starch pastes and gels. Effect of pasting procedures. Carbohydr Polym 7(4): 251-275.
Eerlingen RC, Delcour JA. 1995. Formation, analysis, structure and properties of type III enzyme resistant starch. J Cereal Sci 22(2): 129-138.
Eills HS, Ring SG, Whittam MA. 1989. A comparison of the viscous behavior of wheat and maize starch pastes. J Cereal Sci 10(1): 33-44.
Eliason AC. 1986. Viscoelastic behaviour during the gelatinization of starch. I. Comparison of wheat, maize, potato, and waxy-barley starches. J Texture Stud 17(2):253-265.
Eliasson AC. 1985. Starch gelatinization in the presence of
emulsifiers: A morphological study of wheat starch. Starch
37(12): 411-415.
Ellis HS, Ring SG. 1985. A study of some factors influencing amylose gelation. Carbohydr Polym 5(3): 201-213.
Evens ID, Lips A. 1992. Viscoelasticity of gelatinized starch dispersions. J Texture Stud 23(1): 69-86.
Fannon JEF, BeMiller JN. 1992. Structure of corn starch paste and granule remnants revealed by low temperature scanning electron microscopy after cryopreparation. Cereal Chem 69(4): 456-460.
Fox JD, Robyt JF. 1992. Modification of starch granules by
hydrolysis with hydrochloric acid in various alcohols, and
formation of new kinds of limit dextrins. Carbohydr Polym
227(2): 163-170.
Gallant DJ, Bouchet B, Baldwin PM. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32(3-4): 177-191.
German ML, Blumenfeld AL, Guenin YV, Yuryev VP, Tolstoguzov
VB. 1992. Carbohydr Polym 18(1): 27-34.
Ghiasi K, Hoseney RC, Varriano ME, 1982. Gelatinization of wheat starch. III. Comparison by differential scanning calorimetry and light microscopy. Cereal Chem 59(4): 258-262.
Gidley MJ, Bulpin PV. 1989. Aggregation of amylose in aqueous systems: the effect of chain length on phase behavior and aggregation kinetics. Macromolecules 22(1): 341-346.
Green ML, Marshall RJ, Langley KR. 1990. Structure and
mechanical properties of model composite foods. In Rheology
of Food, Pharmaceutical and Biological Materials with General Rheology, R. E. Carter (Ed.), Elsevier Applied Science, London. p 43.
Greenwood CT, Thompson J. 1962. Physicochemical studies on
starches. Part XXIV. The fraction and characterization of
starches of various plant origins. J Chem Soc(2): 222-229.?
Gudmundsson M. 1994. Retrogradation of starch and the role of its components. Thermochim Acta 246(2): 329-341.
Hansen LM, Hoseney RC, Faubion JM. 1991. Oscillatory rheometry of starch-water system: Effect of starch concentration and temperature. Cereal Chem 68(4): 347-351.
Hennig VHJ, Lechert H, Goemann W. 1976. Examination of the
swelling mechanism of starch by pulsed NMR-method. Starch
28(1):10-13.
Hizukuri S. 1984. Estimation of the distribution of molecular weight for amylose by the low-angle laser-light, scattering technique combined with high-performance gel chromatography. Carbohydr Res 134(1): 1-10.
Hizukuzi S. 1985. Relationship between the distribution of the chain length of the amylopectin and the crystalline structure of starch granules. Carbohydr Res 141(2): 295-306.
Hizukuzi S. 1986. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147(2): 342-347.
Hizukuri S. 1996. Starch: analytical aspects. In Carbohydrate in Food. Eliasson AC(Ed). Marcel Dekker, Inc. New York, NY.pp347-429.
Hizukuri S, Takeda Y, Yasuda M, Suzuki A. 1981. Multi-branched nature of amylose and action of debranching enzymes. Carbohydr Res 94(2): 205-213.
Hoover R. 2000. Acid-treated starches. Food Rev Intl 16(3):
369-392.
Hosency RC, Attwell WA, Lineback DR. 1977. Scanning electron microscopy of starch isolated from baked products. Cereal Foods World 22(1): 56-60.
Jane JL, Chen JF. 1992. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem 69(1): 60-65.
Jane JL, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. 1999. Effect of amylopectin
branch chain length and amylose content on the gelatinisation and pasting properties of starch. Cereal Chem 76(5): 629-637.
Jayakody L, Hoover R. 2002. The effect of lintnerization on cereal starch granules. Food Res Intl 35(7): 665-680.
Kalichevsky MT, Jaroszkiewidz EM, Ablett S, Blanshard JMV,
Lillford PJ. 1992. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr Polym 18(2): 77-88.
Kalichevsky MT, Orford PD, Ring SG. 1986. The incompatibility of concentrated aqueous solutions of dextran and amylose and its effect on amylose gelation. Carbohydr Polym 6(2): 145-154.
Kalichevsky MT, Orford PD, Ring SG. 1990. The retrogradation and gelation of amylopectins from various botanical sources. Carbohydr Res 198(1): 49-55.
Kalichevsky MT, Ring SG. 1987. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydr Res 162(2):
323-328.
Keetels CJAM, Vliet TV, Walstra P. 1996a. Gelation and
retrogradation of concentrated starch systems: 1. Gelation.
Food Hydrocoll 10(3): 343-353.
Keetels CJAM, Vliet TV, Walstra P. 1996b. Gelation and
retrogradation of concentrated starch systems: 2.
Retrogradation. Food Hydrocoll 10(3): 355-362.
Kitahara K, Eitoku E, Suganuma T, Nagahama T. 1997. Some
properties of branched and linear dextrins from nageli
amylodextrin. Carbohydr Polym 33(2-3): 187-194.
Kodama M, Noda H, Kamata T. 1978. Conformation of amylose in water. I. Light-scattering and sedimentation-equilibrium
measurements. Biopolym 17(4): 985-1002.
Komiya T, Nara S. 1986. Changes in crystallinity and gelatinization phenomenon of potato starch by acid treatment. Starch 38(1): 9-13.
Komiya T, Yamada T, Nara S. 1987. Crystallinity of acid treated corn starch. Starch 39(9): 308-311.
Lai MF, Lii CY. 2000. Gelatinization characterization of rice starches. Academia Sinica. Bull Inst Chem 47(1): 55-64.
Lai VMF, Lii CY. 1999. Effect of modulated differential scanning calorimetry (MDSC) variables on thermodynamic and kinetic characteristics during gelatinization of waxy rice starch. Cereal Chem 76(4): 519-525.
Langton M, Hermansson AM. 1989. Microstructural changes in
wheat starch dispersions during heating and cooling. Food
Microstruct 8(1): 29-39.
Lauro M, Ring SG, Bullt VJ, Poutanen K. 1997. Gelation of waxy barley starch hydrolysates. J Cereal Sci 26(3): 347-354.
Leach HW, MacCowen LD, Schoch TJ. 1959. Structure of the
starch granule I. Swelling and solubility patterns of various starches. Cereal Chem 36(6): 534-544.
Lii CY, Shao YY, Tseng KH. 1995. Gelation mechanism and
rheological properties of rice starch. Cereal Chem
72(4):393-400.
Lii CY, Tsai ML, Tseng KH. 1996. Effect of amylose content on the rheological property of rice starch. Cereal Chem
73(4):415-420.
Lin JH, Chang YH. 2006. Molecular degradation rate of rice and corn starches during acid-methanol treatment and its relation to the molecular structure of starch. J Agric Food Chem 54(16): 5880-5886.
Lin JH, Lee SY, Chang YH. 2003. Effect of acid-alcohol
treatment on the molecular structure and physicochemical
properties of maize and potato starches. Carbohydr Polym
53(4): 475-482.
Lin JH, Lii CY, Chang YH. 2005. Chang of granular and molecular structures of waxy maize and potato starches after treated in alcohols with or without hydrochloric acid. Carbohydr Polym 59(4): 507-515.
Liu H, Lelievre J, Ayoung CW. 1991. A study of starch gelatinization using differential scanning calorimetry, X-ray, and birefringence measurements. Carbohydr Res 210(1): 79-97.
Liu H, Lelievre J. 1992. Differential scanning calorimetric and rheological study of the gelatinization of starch granules embedded in gel matrix. Cereal Chem 69(6): 597-599.
Liu H, Lelievre J. 1993. A model of starch gelatinization linking differential scanning calorimetry and birefringence
measurements. Carbohydr Polym 20(1): 1-5.
Lu S, Chen LN, Lii CY. 1997. Correlations between the fine
structure, physicochemical properties, and retrogradation of amylopectins from Taiwan rice varieties. Cereal Chem 74(1): 34-39.
Luyten H, Van Vliet T. 1990. Influence of a filler on the rheological and fracture properties of food materials. In Rheology of Food, Pharmaceutical and Biological Materials with General Rheology, R. E. Carter (Ed.), p43. Elsevier Applied Science, London.
Ma WP, Robyt JF. 1987. Preparation and characterization of soluble starches having different molecular sizes and composition, by acid hydrolysis in different alcohols. Carbohydr Res 166(2): 283-297.
Manners DJ. 1985. Some aspects of the structure of starch.
Cereal Foods World 30(7): 461-467.
McIver RG, Axford DWE, Colwell KH, Elton GAH. 1968. Kinectic study of the retrogradation of gelatinization starch. J Sci Food Agric 19(10): 560-563.
Miles MJ, Morris VJ, Orford PD, Ring SG. 1985a. Gelation of
amylose. Carbohydr Res 135(2): 257-269.
Miles MJ, Morris VJ, Orford PD, Ring SG. 1985b. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res 135(2): 272-280.
Miles MJ, Morris VJ, Ring SG. 1984. Some recent observations on the retrogradation of amylose. Carbohydr Polym 4(2): 73-77.
Miller BS, Derby RI, Trimbo HB. 1973. A pictorial explanation for the increase in viscosity of a heated wheat starch-water suspension. Cereal Chem 50(3): 271-28.
Morrison WR, Laignelet B. 1983. An improved colorimetric
procedue for determining apparent and total amylose in cereal and other starches. J Cereal Sci 1(1): 9-20.
Morrison WR, Tester RF, Gidley MJ, Karkalas J. 1993a. Resistance to acid hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerised waxy and non-waxy barley starches. Carbohydr Res 245(2): 289-302.
Morrison WR, Tester RF, Snape CE, Law R, Gidley MJ. 1993b.
Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and tree amylose in waxy and normal barley starches. Cereal Chem 70(4): 385-391.
Mua JP, Jackson DS. 1997. Relationships between functional
attributes and molecular structures of amylose and
amylopectin fractions from corn starch. J Agric Food Chem
45(10): 3848-3854.
Orford PD, Ring SG, Carroll V, Miles MJ, Morris VJ. 1987. The effect of concentration and botanical source on the gelation and retrogradation of starch. J Sci Food Agric 39(2): 169-177.
Osunsam AT, Akingbala JO, Oguntimein GB. 1989. Effect of
storage on starch content and modification of cassava starch. Starch 41(1): 54-57.
Ott M, Hester EE. 1965. Gel formation as related to concentration of amylose and degree of starch swelling. Cereal Chem 42(5): 476-484.
Pfannemuller B, Mayerhofer H, Schultz RC. 1971. Conformation of amylose in aqueous solution: optical rotatory dispersion and circular dichroism of amylose-iodine complexes and dependence on chain length of retrogradation of amylose. Biopolymers 10(2): 243-261.
Radhika Reddy K, Ali SZ, Bhattacharya KR. 1993. The fine
structure of rice-starch amylopectin and its relation to the texture of cooked rice. Carbohydr Polym 22(4): 267-275.
Ral JP, Cavanagh CR, Larroque O, Regina A, Morell MK. 2008.
Structural and molecular basis of starch viscosity in hexaploid wheat. J Agric Food Chem 56(11): 4188-4197.
Rayment P, Ross-Murphy SB, Eills PR. 1995. Rheological
properties of guar galactomannan and rice starch mixture-I.
Steady shear measurements. Carbohydr Polym 28(2): 121-130.
Ring S, Stainsby G. 1982. Filler reinforcement of gels. Prog Food Nutr Sci 6: 323-329.
Ring SG. 1985. Some studies on starch gelation. Starch 37(3): 80-83.
Ring SG. 1987. Molecular interactions in aqueous solutions of the starch polysaccharides: a review. Food Hydrocoll 1(5-6): 449-454.
Ring SG, Colonna P, I’Anson KJ, Kalichvsky MT, Miles MJ, Morris VJ, Orford PD. 1987. The gelation and crystallization of amylopectin . Carbohydr Res 162(2): 277-293.
Robin JP, Mercier C, Charbonniere R, Guilbot A. 1974. Lintnerized starches. Gel filtration and enzymatic studies insoluble residues from prolonged acid treatment of potato starch. Cereal Chem 51(3): 389-406.
Robyt JF, Choe JY, Fox JD, Hahn RS, Fuchs EB. 1996a. Acid
modification of starch granules in alcohols: reactions in
mixtures of two alcohols combined in different ratios.
Carbohydr Res 283(1): 141-150.
Robyt JF, Choe JY, Hahn RS, Fuchs EB. 1996b. Acid modification of starch granules in alcohols: effects of temperature, acid concentration, and starch concentration. Carbohydr Res 281(2): 203-218.
Sandhya-Rani MR, Bhattacharya KR. 1989. Rheology of rice-flour pastes: Effect of variety, concentration, and temperature and time of cooking. J Texture Stud 20(2): 127-137.
Sang Y, Bean S, Seib PA, Pedersen J, Shi YC. 2008. Structure and functional properties of sorghum starches differing in amylose content. J Agric Food Chem 56(15): 6680-6685.
Sasaki T, Matsuki J. 1998. Effect of wheat starch structure on swelling power. Cereal Chem 75(4): 525-529.
Sasaki T, Yasui T, Matsuki J. 2000. Influence of non-starch
polyasccharaides isolated from wheat flour on the
gelatinization and gelation of wheat starches. Food Hydrocoll 14(4): 295-303.
Sasaki T, Yasui T, Matsuki J, Satake T. 2002. Comparison of
physical properties of wheat starch gels with different amylose content. Cereal Chem 79(6): 861-866.
Schoch TJ. 1964. Swelling power and solubility of granular
starches in Methods in Carbohydrate Chemistry Vol. IV.
Schoch TJ, Maywald EC. 1968. Preparation and properties of
various legume starches. Cereal Chem 45(6): 564-573.
Shao YY, Tseng YH, Chang YH, Lin JH, Lii CY. 2007. Rheological properites of rice amylose gels and their relationships to the structures of amylose and its subfractions. Food Chem 103(4): 1324-1329.
Shi YC, Seib PA. 1992. The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr Res 227(1): 131-145.
Shibanuma K, Takeda Y, Hizukuri S, Shibata S. 1994. Molecular structures of some wheat starches. Carbohydr Polym 25(2): 111-116.
Singh N, Inouchi N, Nishinari K. 2006. Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocoll 20(6): 923-935.
Steeneken PAM. 1989. Rheological properties of aqueous
suspensions of swollen starch granules. Carbohydr Polym
11(1): 23-42.
Suzuki A, Hizukuri S, Takeda Y. 1981. Physicochemical studies of kuzu starch. Cereal Chem 58(4): 286-290.
Svegmark K, Hermansson AM. 1993. Microstructure and
rheological properties of composites of potato starch granules and amlose: A comparison of observed and predicted
structures. Food Struct 12(2): 181-193.
Swinkels JJM. 1985. Composition and properties of commercial native starches. Starch, 37(1): 1-5.
Takeda Y, Hizukuri S. 1987. Structure of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydr Res 165(1): 139-145.
Takeda Y, Maruta N, Hizukuri S. 1992. Structure of amylose
subfractions with different molecular sizes. Carbohydr Res
226(2): 279-285.
Takeda Y, Shibahara S, Hanashiro I. 2003. Examination of the structure of amylopectin molecules by fluorescent labelling. Carbohydr Res 338(5): 471-475.
Takeda C, Takeda Y, Hizukuri S. 1983. Physicochemical properties of lily starch. Cereal Chem 60(3): 212-216.
Takeda C, Takeda Y, Hizukuri S. 1993. Structure of amylopectin of amylomaize. Carbohydr Res 246(4): 273-281.
Takeda Y, Tomooka S, Hizukuri S. 1993. Structure of branches and linear molecules of rice amyloses. Carbohydr Res 246(4):267-272.
Tester RF, Morrison WR. 1990a. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67(6): 551-557.
Tester RF, Morrison WR. 1990b. Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem 67(6): 558-563.
Thitipraphunkul K, Uttapap D, Piyachomkwan K, Takeda Y. 2003. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydr Polym 54(4): 489-498.
Tsai ML, Li CF, Lii CY. 1997. Effects of granular structures on pasting behavior of starches. Cereal Chem 74(6):750-757.
Tsai ML, Lii CY. 2000. Effect of hot-water-soluble components on the rheological properties of rice starch. Starch 52(2-3): 44-53.
Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. 2003. Rice starches I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. J Cereal Sci 38(1): 43-52.
Virtanen T, Autio K, Suortti T, Poutanen K. 1993. Heat-induced changes in native and acid-modified oat starch paste. J Cereal Sci 17(2): 137-145.
Wang S, Yu J, Gao W, Pang J, Liu H, Yu J. 2007. Granule structural changes in native Chinese Yam (Dioscorea opposeta Thunb var. Anguo) starch during acid hydrolysis. Carbohydr Polym 69(2): 286-292.
Wang YJ, Truong VD, Wang LF. 2003. Structures and rheological propertyes of corn starch as affected by acid hydrolysis. Carbohydr Polym 52(3): 327-333.
Wurzburg OB. 1986. Forty years of Industrial starch research. Cereal Foods World 31(12): 897-899.
You S, Izydorczyk MS. 2007. Comparison of the physicochemical properties of barley starches after partial α-amylolysis and acid/ alcohol hydrolysis. Carbohydr Polym 69(3): 489-502.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top