跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江俊毅
研究生(外文):Chun-Yi Chiang
論文名稱:可變動位元率之彩色影像量化技術
論文名稱(外文):Variable Bit-Rate Color Image Quantization
指導教授:胡育誠胡育誠引用關係
指導教授(外文):Yu-chen Hu
學位類別:碩士
校院名稱:靜宜大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:35
中文關鍵詞:變動區塊大小切割影像編碼調色盤設計彩色影像量化
外文關鍵詞:Color Image QuantizationPalette DesignVariable Block SizeImage Compression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
由於影像鄰近的像素之間有很高的相似性,所以本論文中我們依據此特性提出了兩個可變動位元率的彩色影像量化方法。第一個方法主要針對欲編碼像素的上方及左方像素的相似程度來決定所要使用的狀態調色盤大小,利用這個方式希望能在較短的時間內找出調色盤中較佳的代表色。
第二個方法為將給定的影像切割成等邊且固定大小的區塊,並計算出區塊內所有像素之間的相似程度,若相似度很高則此區塊只需一個共同的調色盤代表色即可。反之若區塊差異很大,則此區塊必須進行切割後再作一次區塊相似程度的比較,直到無法再進行切割為止。
我們所提的方法不但能夠解決傳統彩色影像量化中不同位元率就會對應到不同大小的調色盤,而且在近似位元率的條件下影像重建後的品質也比傳統方式有更好的表現。
As the images between neighboring pixels high similarity, so based on the characteristics, we proposed two methods of variable bit-rate about color image quantization in this paper. The first method focuses on the degree of similarity between the top and left pixel for encoding pixel to determine the state of the palette to use size. Using this approach we hope to find a better palette color in a short time.
The second method splits the given image into equilateral and fixed-size blocks and then calculates the degree of similarity between pixels in every split block. If the similar degree is high, this block only takes a common representative color in palette. On the contrary if the similar degree of block is widely different, the comparison that this block must do the similar intensity once again after splitting, until it is unable to split again.
Our method not only can solve the conventional color image quantization that different bit-rate would correspond to a different size of palette, but also under conditions similar to the bit-rate the quality of reconstructed images are better than traditional methods.
摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章、 緒論 1
1.1 研究背景與動機 1
1.2 研究方法 1
1.3 論文架構 3
第二章、 相關技術回顧 4
2.1 彩色影像量化技術 4
2.2 調色盤設計 5
2.2.1 分群演算法 5
2.2.2 分裂演算法 5
2.3 像素映像技術 6
2.3.1部分距離搜尋法 7
2.3.2三角不等式規則 8
2.4 索引壓縮技術 10
第三章、 可調整位元率的彩色影像量化技術 13
3.1 技術說明 13
3.2  實驗結果 16
第四章、 變動區塊大小之彩色影像量化技術 23
4.1 技術說明 23
4.2 實驗結果 26
第五章、 結論與未來研究方向 32
5.1 結果討論 32
5.2 未來研究方向 32
參考文獻 33
[1]蕭幸樺,胡育誠,蘇炳煌,「適用於索引類型彩色影像之無失真索引編碼技術」,勤益科技大學2009民生電子研討會,450~458頁,台中縣太平市,民國98年11月6日。
[2]T. Michael and A. Charles, “Color Quantization of Images,” IEEE Transactions on Signal Processing, Vol. 39, No. 12, pp. 2677-2690, 1991.
[3]J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, 1974 (Addison-Wesley, Reading, MA).
[4]Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vector Quantization Design,” IEEE Transactions on Communications, Vol. 28, No. 1, pp. 84-95, 1980.
[5]M. B. Al-Daoud and S. A. Roberts, “New Methods for the Initialization of Clusters,” Pattern Recognition Letters, Vol. 17, No. 5, pp. 451-455, 1996.
[6]I. S. Hsieh and K. C. Fan, “An Adaptive Clustering Algorithm for Color Quantization,” Pattern Recognition Letters, Vol. 21, No. 4, pp. 337-346, 2000.
[7]J.M Peña, J.A Lozano and P. Larrañaga, “An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm,” Pattern Recognition Letters, Vol. 20, No. 10, pp. 1027-1040, 1999.
[8]P. Scheunders, “A Comparison of Clustering Algorithms Applied to Color Image Quantization,” Pattern Recognition Letters, Vol. 18, No. 11-13, pp. 1397-1384, 1997.
[9]Y. L. Huang and R. F. Chang, “A Fast Finite State Algorithm for Generating RGB Palettes of Color Quantized Images,” Journal of Information Science and Engineering, Vol. 20, No. 4, pp. 771-782, 2004.
[10]C. H. Chang, P. Xu, R. Xiao, and T. Srikanthan, “New Adaptive Color Quantization Method Based on Self-Organizing Maps,” IEEE Transactions on Neural Networks, Vol. 16, No. 1, pp. 237–249, 2005.
[11]C. H. Wang, C. N. Lee, and C. H. Hsieh, “Sample-Size Adaptive Self-Organization Map for Color Images Quantization,” Pattern Recognition Letters, Vol. 28, No. 13, pp. 1616–1629, 2007.
[12]G. Schaefer and H. Zhou, “Fuzzy Clustering for Colour Reduction in Images,” Telecommunication Systems, Vol. 40, No. 1-2, pp. 17–25, 2009.
[13]P. Heckbert, “Color Image Quantization for Frame Butter Display,” Computer Graphics, Vol. 16, pp. 297-307, 1982.
[14]C. Y. Yang and J. C. Lin, “RWM-Cut for Color Image Quantization,” Computer and Graphics, Vol. 20, No. 4, pp. 577-588, 1996.
[15]Y. Sirisathitkul, S. Auwatanamongkol and B. Uyyanonvara, “Color Image Quantization Using Distances Between Adjacent Colors Along the Color Axis with Highest Color Variance,” Pattern Recognition Letters, Vol. 25, No. 9, pp. 1025-1043, 2004.
[16]K. Kanjanawanishkul and B. Uyyanonvara, “Novel Fast Reduction Algorithm for Time-Constrained Applications,” Journal of Visual Communication and Image Representation, Vol. 16, No. 3, pp. 311-332, 2005.
[17]W. D. Chen and W. Ding, “An Improved Median-Cut Algorithm of Color Image Quantization,” Computer Science and Software Engineering, Vol. 2, pp. 943-946, 2008.
[18]Y. C. Hu, M. G. Lee, P. Y. Tsai, "Color Palette Generation Schemes for Color Image Quantization," Imaging Science Journal, Vol. 57, No. 1, pp. 46-59, 2009.
[19]Y. C. Hu and M. G. Lee, “K-Means Based Color Palette Design Scheme with the Use of Stable Flags,” Journal of Electronic Imaging, Vol. 16, No. 3, 2007.
[20]L. Nolle and G. Schaefer, “Colour Map Design Through Optimization,” Engineering Optimization, Vol. 39, No. 3, pp. 327-343, 2007.
[21]Y. C. Hu and B. H. Su, “Accelerated K-Means Clustering Algorithm for Color Image Quantization,” Imaging Science Journal, Vol. 56, No. 1, pp. 29-40, 2008.
[22]C. Bei and R. M. Gray, “An Improvement of the Minimum Distortion Encoding Algorithm for Vector Quantization,” IEEE Transaction on Communications, Vol. 33, No. 10, pp. 1132-1133, 1985.
[23]S. H. Huang and S. H. Chen, “Fast Encoding Algorithm for VQ-Based Image Coding,” Electronics Letters, Vol. 26, No. 19, pp. 1618-1619, 1990.
[24]S. W. Ra and J. K. Kim, “A Fast Mean-Distance-Ordered Partial Codebook Search Algorithm for Image Vector Quantization,” IEEE Transactions on Circuits and Systems II, Vol. 40, No. 9, pp. 576-579, 1993.
[25]S. C. Cheng and C. K. Yang, “A Fast Novel Technique for Color Quantization using Reduction of Color Space Dimensionality,” Pattern Recognition Letters, Vol. 22, No. 8, pp. 845-856, 2001.
[26]K. F. Hwang and C. C. Chang, “A Fast Pixel Mapping Algorithm using Principal Component Analysis,” Pattern Recognition Letters, Vol. 23, No. 14, pp. 1747-1753, 2002.
[27]K. L. Hung and C. C. Chang, “An Improvement of a Technique for Color Quantization Using Reduction of Color Space Dimensionality,” Information (Ljubljana), Vol. 26, No. 1, pp. 11-16, 2002.
[28]A. J. Pinho and A. J. R. Neves, “A Survey on Palette Reordering Methods for Improving the Compression of Color-Indexed Images,” IEEE Trans. on Image Processing, Vol. 13, No. 11, pp. 1411–1418, 2004.
[29]J. Z. C. Lai and Y. C. Liaw, “A Novel Approach of Reordering Color Palette for Indexed Image Compression,” IEEE Signal Processing Letters, Vol. 14, No. 2, pp. 117-120, 2007.
[30]Y. C. Chang and D. J. Lee, “Color Image Quantization Using Color Variation Measure,” Computational Intelligence in Image and Signal Processing, pp. 127-132, 2007.
[31]C. C. Chang, G. M. Chen, and Y. C. Hu, “A Novel Index Coding Scheme for Vector Quantization,” Fundamenta Informaticae, Vol. 71, No. 2-3, pp. 512-227, March 2006.
[32]Y. C. Hu and C. C. Chang, “Variable Rate Vector Quantization Scheme Based on Quadtree Segmentation,” IEEE Transactions on Consumer Electronics, Vol. 45, No. 2, pp. 310-317, May 1999.
[33]S. B. Yang and L. Y. Tseng, “Smooth Side-Match Classified Vector Quantizer with Variable Block Size,” IEEE Transactions on Image Processing, Vol. 10, No. 5, May 2001.
[34]C. H. Hsieh and J. C. Tasi, “Lossless Compression of VQ Index with Search-Order Coding,” IEEE Transactions on Image Processing, Vol. 5, No. 11, pp. 1579-1582, 1996.
[35]Y. C. Hu and C. C. Chang, “Low Complexity Index-Compressed Vector Quantization for Image Compression”, IEEE Transactions on Consumer Electronics, Vol. 45, No.1, pp. 219-223, 1999.
[36]P. Y. Chen and C. T. Yu, “Lossless Vector-Quantised Index Coding Design and Implementation,” IEEE Proceedings on Circuits Devices System, Vol. 152, No. 2, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top