跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭幸樺
研究生(外文):Sing-Hua Hsiao
論文名稱:適用於調色盤類型影像之無失真索引壓縮技術
論文名稱(外文):Losslessly Index Compression for Palette Images
指導教授:胡育誠胡育誠引用關係
指導教授(外文):Yu-Chin Hu
學位類別:碩士
校院名稱:靜宜大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:34
中文關鍵詞:調色盤設計調色盤類型影像無失真索引壓縮彩色影像量化
外文關鍵詞:Color Image QuantizationPalette ImagesPalette DesignLosslessly Index Compression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中我們提出一個適用於調色盤類型彩色影像的低複雜度無失真索引壓縮技術。我們提出的方法主要是針對RGB彩色影像經由彩色影像量化後產生的索引表進行無失真壓縮。依照索引表鄰近索引值之間的相似程度我們分為相同、相似或完全不同三種情況,再針對這三種情況進行不同編碼處理;最後利用這三種情況的出現頻率給定不同對應的動態指標位元進行編碼。本篇所提出的方法能夠大幅度降低彩色影像量化後所需的位元率,同時擁有非常低的時間複雜度。本篇所提出的方法透過無失真索引壓縮後仍保留與傳統彩色影像量化技術後相同的影像品質,也就是索引壓縮解碼後不會造成額外的影像失真。
This paper presents a new index compression method for indexed color images. The proposed method can be viewed as the losslessly post processing of the index table generated by color image quantization. All the indices to be processed can be classified into three categories and three different rules are used to encode them. In the proposed method, the indicators of these three categories are dynamically assigned based on the occurrences of them. From the results, it is shown that the proposed method significantly reduces the required bit rates while consuming a low computational cost.
中文摘要 i
英文摘要 ii
誌謝 ii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1研究背景與動機 1
1.2研究方法 1
1.3 論文架構 3
第二章 相關文獻回顧 5
2.1彩色影像量化 5
2.2調色盤設計 6
2.2.1分群演算法 6
2.2.2分裂演算法 9
2.3像素映像技術 9
2.3.1部份距離搜尋法 10
2.3.2 三角不等式演算法 11
2.3.3 部份搜尋演算法 12
2.4索引壓縮技術 13
2.4.1搜尋順序編碼法 13
2.4.2低複雜度索引壓縮向量量化編碼法 15
2.4.3無失真索引壓縮編碼法 16
第三章 提出的方法 19
3.1 編碼程序 19
3.2解碼 23
第四章 實驗結果 24
第五章 結論與未來研究方向 33
5.1結果討論 33
5.2 未來研究方向 33
參考文獻 34
[1]江俊毅,胡育誠,羅峻旗, "可調整位元率的彩色影像量化技術," 2009民生電子研討會,勤益科技大學主辦,台中縣太平市,Nov. 6, 2009.
[2]T. Michael and A. Charles, “Color Quantization of Images,” IEEE Transactions on Signal Processing, Vol. 39, No. 12, pp. 2677-2690, 1991.
[3]J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, 1974 (Addison-Wesley, Reading, MA).
[4]Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vector Quantization Design,” IEEE Transactions on Communications, Vol. 28, pp.84-95, January 1980.
[5]Z. Xiang, “Color Image Quantization by Minimizing the Maximum Intercluster Distance,” ACM Transactions on Graphics, Vol. 16, No.3, pp. 260-276, July1997.
[6]J. M Peña, J.A Lozano and P. Larrañaga, “An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm,” Pattern Recognition Letters, Vol. 20, No. 10, pp. 1027-1040, 1999.
[7]G. Panane and M. Russo, “The Enhanced LBG Algorithm,” Neural Networks, Vol. 14, pp. 1219-1237, 2001.
[8]D. and Ozdemir and L. Akarun, “A Fuzzy Algorithm for Color Quantization of Images,” Pattern Recognition Letters, Vol. 35, pp. 1785-1791, 2002.
[9]M. B. Al-Daoud and S. A. Roberts, “New Methods for the Initialization of Clusters,” Pattern Recognition Letters, Vol. 17, pp. 451-455, 1996.
[10]I. S. Hsieh and K. C. Fan, “An Adaptive Clustering Algorithm for Color Quantization,” Pattern Recognition Letters, Vol. 21, pp. 337-346, 2000.
[11]P. Scheunders, “A Comparison of Clustering Algorithms Applied to Color Image Quantization,” Pattern Recognition Letters, Vol. 18, No. 11-13, pp. 1397-1384, 1997.
[12]Y. L. Huang and R. F. Chang, “A Fast Finite State Algorithm for Generating RGB Palettes of Color Quantized Images,” Journal of Information Science and Engineering, Vol. 20, No. 4, pp.771-782, 2004.
[13]T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and A. Y. Wu, “An Efficient K-means Clustering Algorithm: Analysis and Implementation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, pp. 881-892, 2002.
[14]C. H. Chang, P. Xu, R. Xiao and T. Srikanthan, “New Adaptive Color Quantization Method Based on Self-Organizing Maps,” IEEE Transactions on Neural Networks, Vol. 16, No. 1, pp. 237-249, 2005.
[15]T. Tasdizen, L. Akarun and C. Ersoy, “Color Quantization with Genetic Algorithms,” Signal Processing: Image Communication, Vol. 12, pp. 49-57, 1998.
[16]K. C. Lo, Y. H. Chan and M. P. Yu, “Color Quantization by Three-Dimensional Frequency Diffusion,” Pattern Recognition Letters, Vol. 24, pp. 2325-2334, 2003.
[17]C. H. Wang, C. N. Lee, and C. H. Hsieh, “Sample-Size Adaptive Self-Organization Map for Color Images Quantization,” Pattern Recognition Letters, Vol. 28, No. 13, pp. 1616-1629, 2007.
[18]G. Schaefer and H. Zhou, “Fuzzy Clustering for Color Reduction in Images,” Telecommunication Systems, Vol. 40, No. 1-2, pp. 17-25, 2009.
[19]P. Heckbert, “Color Image Quantization for Frame Buffer Display,” Computer Graphics, Vol. 16, No. 3, pp. 297-307, 1982.
[20]X. Wu and I.H. Witten, “ A Fast K-means Type Clustering Algorithm,” Technique Report, Department of Computer Science, University of Calgary, Calgary, Canada, 1985.
[21]K. Kanjanawanishkul and B. Uyyanonvara, “Novel Fast Reduction Algorithm for Time-Constrained Applications”, Journal of Visual communication and Image Representation, Vol. 16, pp. 265-275, 2002.
[22]C. Y. Yang and J. C. Lin, “RWM-Cut for Color Image Quantization,” Computer and Graphics, Vol. 20, No. 4, pp. 577-588, 1996.
[23]S. C. Cheng and C. K. Yang, “A Fast Novel Technique for Color Quantization Using Reduction of Color Space Dimensionality,” Pattern Recognition Letters, Vol. 22, No. 8, pp. 845-856, 2001.
[24]X. Li, T., et al, “Adaptive Color Quantization Based on Perceptive Edge Protection”, Pattern Recognition Letters, Vol. 24, pp. 3165-3176, 2003.
[25]Y. Sirisathitkul, S. Auwatanamongkol and B. Uyyanonvara, “Color Image Quantization Using Distances Between Adjacent Colors Along the Color Axis with Highest Color Variance,” Pattern Recognition Letters, Vol. 25, No. 9, pp. 1025-1043, 2004.
[26]W. D. Chen and W. Ding, “An Improved Median-cut Algorithm of color image Quantization,” Computer Science and Software Engineering, Vol. 2, pp. 943-946, 2008.
[27]Y. C. Hu and M. G. Lee, “K-means Based Color Palette Design Scheme with the use of Stable Flags,” Journal of Electronic Imaging, Vol. 16, No. 3, 033003 (1-11), 2007.
[28]Y. C. Hu, M. G. Lee, P. Y. Tasi, “Color Palette Generation Schemes for Color Image Quantization,” Imaging Science Journal, Vol. 57 No. 1, pp. 46-59, 2009.
[29]L. Nolle and G. Schaefer, “Color Map Design through Optimization,” Engineering Optimization, Vol. 39, pp. 327-343, 2007.
[30]Y. C. Hu and B.H. Su, “Accelerated K-means Clustering Algorithm for Color Image Quantization,” Imaging Science Journal, Vol. 56, No. 1, pp. 29-40, 2008.
[31]C. Bei and R. M. Gray, “An Improvement of the Minimum Distortion Encoding Algorithm for Vector Quantization,” IEEE Transaction on Communications, Vol.33, pp. 1132-1133, 1985.
[32]S. H. Huang and S. H. Chen, “Fast Encoding Algorithm for VQ-based Image Coding”, Electronics Letters, Vol. 26, No. 19, pp.1618-1619, 1990.
[33]S. C. Cheng and C. K. Yang, “A Fast Novel Technique for Color Quantization using Reduction of Color Space Dimensionality,” Pattern Recognition Letters, Vol. 22, No. 8, pp. 845-856, 2001.
[34]K. F. Hwang and C. C. Chang, “A Fast Pixel Mapping Algorithm using Principal Component Analysis,” Pattern Recognition Letters, Vol. 23, No. 14, pp. 1747-1753, 2002.
[35]K. L. Hung and C. C. Chang, “An Improvement of a Technique for Color Quantization Using Reduction of Color Space Dimensionality,” Informatica (Ljubljana), Vol. 26, No. 1, pp. 11-16, 2002.
[36]C. C. Chang, G. M. Chen and Y. C. Hu, “A Novel Index Coding Scheme for Vector Quantization,” Fundamenta Informaticae, Vol. 71, No. 2-3, pp. 215-227, 2006.
[37]C. H. Hsieh and J. C. Tasi, “Lossless Compression of VQ Index with Search-Order Coding,” IEEE Transactions on Image Processing, Vol. 5, No. 11, pp. 1579-1582, 1996.
[38]Y. C. Hu and C. C. Chang, “Low Complexity Index-Compressed Vector Quantization for Image Compression”, IEEE Transactions on Consumer Electronics, Vol. 45, No.1, pp. 219-223, 1999.
[39]P. Y. Chen and C. T. Yu, “Lossless Vector-Quantised Index Coding Design and Implementation,” IEEE Proceedings on Circuits Devices System, Vol. 152, No. 2, 2005.
[40]E. C. Liu, T. C. Wang, “Lossless Compression of VQ Indexes Using Search-Order and Correction Codes”, IEEE Workshop on Signal Processing System (SIPS 98), pp. 202-209, 1998.
[41]S. W. Ra and J. K. Kim, “A Fast Mean-Distance-Ordered Partial Codebook Search Algorithm for Image Vector Quantization,” IEEE Transactions on Circuits and Systems II, Vol. 40, No. 9, pp. 576-579, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊