跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉永璿
研究生(外文):Yung-Shiuan Liu
論文名稱:以可見光光觸媒降解甲醛氣體之研究
論文名稱(外文):A study of degradation of gaseous formaldehyde using visible-light photocatalyst
指導教授:吳仁彰
指導教授(外文):Ren-Jang Wu
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:101
中文關鍵詞:甲醛鈀金屬光觸媒二氧化鈦
外文關鍵詞:HCHOPalladiumPotocatalystsol-gel methodPd/TiO2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:777
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗室分別以商業用二氧化鈦光觸媒TiO2(ST-21) or TiO2(ST-01)及溶膠凝膠法自製二氧化鈦TiO2(SG),以含浸法於表面含浸,或於製程中混合加入Pd、Au、Pt、Ag...等金屬,製備一系列TiO2光觸媒。本實驗甲醛氣體為福馬林溶液(37 %)汽化而得,實驗系統以省電燈泡(18 W/6500 K)作為光源,Pyrex玻璃為反應器材質,內裝0.15 g光觸媒及20~30 ppm甲醛氣體。實驗結果發現,添加Pd於自製TiO2(SG)中,可有效在短時間內(20~30 min)分解85 %以上的甲醛氣體。從XRD光譜得知溶膠-凝膠法自製二氧化鈦TiO2(SG)的晶格型態為Anatase。溶膠-凝膠法自製二氧化鈦TiO2(SG)及將Pd金屬含浸於溶膠-凝膠法自製二氧化鈦(Pd/ TiO2(SG))的平均粒徑大小計算值分別為9.5 nm及11.4 nm。另外,根據TEM照片,溶膠-凝膠法自製二氧化鈦TiO2(SG)的晶粒大小為7~18 nm,而Pd/ TiO2(SG)觸媒則為10~25 nm。
TiO2 nanoparticles and Pd doped TiO2 (Pd/ TiO2) were prepared by sol-gel method. Pd/ TiO2 material as catalyst for the photodegradation of formaldehyde (HCHO) dissolved in water was characterized by XRD, TEM, TPR. From XRD data, the crystalline type of sol-gel method to fabricate TiO2 (SG) is the Anatase type. TEM revealed that the size of the prepared TiO2 (SG) and Pd/TiO2 (SG) were 7~18 nm and 10~25 nm, respectively. The photocatalytic activities of the TiO2 and Pd loaded TiO2 nanomaterial were evaluated and compared for the photodegradation of formaldehyde (HCHO). HCHO degradation with Pd/TiO2(SG)catalyst studied under visible light irradiation, the concentration of CO2 and H2O increased with irradiation time. HCHO degradation on Pd/TiO2 (SG) catalyst, within 20 to 30 min, the degradation rate of HCHO was more than to 85 %. By using Pd/TiO2 (SG), the rate is faster than other precious metal doped TiO2 (Au/ TiO2、Ag/ TiO2、Pt/ TiO2) applied. By measuring the CO2 concentration, we understood the HCHO was decomposed into H2O and CO2.
第一章、緒論 1
1-1前言 1
1-2光觸媒簡介 3
1-3觸媒材料簡介 7
1-3-1二氧化鈦簡介 7
1-3-2鈀金屬簡介 11
1-3-3鉑金屬簡介 12
1-4甲醛氣體簡介 13
1-4-1各國甲醛法規標準 13
1-4-2甲醛的危害性 13
1-5 文獻回顧 13
1-5-1 觸媒的製備方法 18
a、含浸法 18
b、化學氣相沉積法 19
c溶膠-凝膠法 20
1-5-2光觸媒改質 23
1-5- 3相關文獻整理 26
第二章、實驗方法 38
2-1實驗藥品 38
2-2 觸媒製備流程 39
2-2-1 含浸法觸媒製備步驟 39
2-2-2一系列溶膠凝膠法自製二氧化鈦TiO2(SG)觸媒製備步驟 40
2-3材料定性相關儀器設備介紹 41
2-3-1 X光繞射分析儀(XRD) 41
2-3-2穿透式電子顯微鏡(Transmission Electron Microscope,TEM)
43
2-3-3程溫還原分析儀(Temperature-programmed reduction,TPR)
45
2-3-4熱重分析儀(Thermogravimetric analyzer,TGA) 47
2-4實驗儀器 48
2-4-1實驗採用的光源 48
2-4-2甲醛偵測器 49
2-4-3二氧化碳偵測器 50
2-5實驗裝置及步驟 51
2-5-1光觸媒分解甲醛實驗裝置及步驟 51
2-5-2光觸媒分解甲醛產生二氧化碳氣體實驗裝置及步驟 53
第三章、實驗結果與討論 55
3-1 XRD繞射圖譜 55
3-2各觸媒TEM圖譜 56
3-3各觸媒TPR觀察結果 62
3-4各觸媒熱重分析結果(TGA) 64
3-5光觸媒降解甲醛實驗之探討 65
3-5-1不同燈源對分解甲醛之效應 65
3-5-2不同二氧化鈦對分解甲醛之效應 67
3-5-3含浸不同金屬之分析 68
3-5-4含浸金屬比例之探討 70
3-5-5光觸媒降解甲醛實驗產物之探討 71
3-6光觸媒分解甲醛實驗反應機構之探討 73
3-7光觸媒作用機制之探討 79
第四章、結論 81
第五章、參考文獻 84

圖目錄:
圖1-1 光觸媒反應機構圖 5
圖1-2 二氧化鈦立體結構圖 7
圖1-3二氧化鈦相圖 10
圖1-4 二氧化鈦之晶體結構圖 10
圖1-5 二氧化鈦之分子連結方式圖 11
圖1-6 L. Yang等人設計實驗系統簡圖 26
圖1-7不同型式反應器圖 28
圖1-8 J. Yang等人實驗系統簡圖 29
圖1-9 F. Shiraishi 等人設計光觸媒反應器示意圖 32
圖1-10(a)InVO4、TiO2 能階示意圖 33
圖1-10(b)Ag/InVO4-TiO2 films氧化還原機制示意圖 33
圖1-11 Ringo C.W. Lam 等人實驗系統簡圖 35
圖2-1含浸法觸媒製備流程圖 39
圖2-2一系列溶膠凝膠法自製TiO2(SG)觸媒製備流程圖 40
圖2-3 Shimadzu XRD-6000圖 42
圖2-4 穿透式電子顯微鏡剖面機構示意圖與JEM 2100圖 44
圖2-5 TPR系統簡圖 46
圖2-6 熱重分析儀外觀及設計圖 47
圖2-7各種光源強度分佈圖 48
圖2-8 PPM Formaldemeter htV圖 50
圖2-9 ZG106 二氧化碳及温度監測儀 51
圖2-10 光觸媒降解甲醛實驗裝置簡圖 52
圖2-11 光觸媒降解甲醛產生二氧化碳氣體實驗裝置簡圖 54
圖3-1各觸媒XRD繞射圖 56
圖3-2-1 TiO2(SG) TEM 照片—400000X 57
圖3-2-2 TiO2(SG)TEM 照片—100000X 58
圖3-2-3 0.05 % Pd/ TiO2(SG)TEM 照片—100000X 59
圖3-2-4 0.05 % Pd/ TiO2(SG)TEM 照片—500000X 60
圖3-2-5 0.05 % Pd/TiO2(SG)TEM 照片—400000X 61
圖3-3-1TPR圖 64
圖3-4-1熱重分析圖 65
圖3-5-1甲醛降解效率圖;觸媒:TiO2(SG) 66
圖3-5-2甲醛降解效率圖;觸媒:0.05 % Pd/ TiO2(SG) 67
圖3-5-3甲醛降解效率圖;光源:18 W日光燈 68
圖3-5-4甲醛降解效率圖;光源:18 W日光燈 69
圖3-5-5甲醛降解效率圖;光源:18 W日光燈 70
圖3-5-6甲醛降解效率圖;光源:18 W日光燈 71
圖3-5-7二氧化碳量測圖 72
圖3-6-1 模擬計算圖 76
圖3-6-2 模擬計算圖 77
圖3-6-3吸附能階示意圖 78
圖3-6-4 吸附能量示意圖 79
圖3-7-1光觸媒作用機制意示圖 80

表目錄:
表 1-1 二氧化鈦的應用分布 6
表 1-2 常見粉體材料之折射率比較表 8
表 1-3 二氧化鈦之種類與主要用途 9
表1-4 各國之甲醛濃度標準 15
表1-5 甲醛濃度對人體急性健康影響 16
表1-6 甲醛濃度與暴露延時對人體健康的影響 17
表1-7不同觸媒製備方法之優缺點比較 22
表1-8 文獻整理比較表 36
表2-1 實驗藥品一覽表 38
[1]郭百蟬,「可見光奈米光觸媒應用於甲醛消退之研究」,台灣科技大學營建工程系碩士論文,(2005)
[2]李俊璋,「居住環境中甲醛及揮發性有機物質逸散材質之生命週期與健康風險研究(Ι)」,行政院國家科學委員會補助專題研究計畫成果報告,(2003)
[3]T. Godish, J. Rouch, Mitigation of residential formaldehyde contamination by indoor climate control, American Industrial Hygiene Association Journal 47 (1986) 792–797.
[4]甲醛物質安全資料表,工研院環安中心,2000
[5]光觸媒應用製品的市場實態及展望, CMC出版, (2002)
[6]呂宗昕, 吳偉宏, 奈米科技與二氧化鈦光觸媒, 科學發展, 367 (2004 )73-77。
[7]A. P. Jones, Indoor Air Quality and Health, Atmospheric Environment 33 (1999)4535–4564.
[8]黃蒨芸等 , “辦公建築室內裝修建材逸散物質對室內空氣品質影響之調查研究 ” 內政部建築研究所(1997)
[9]A. M. Jacoby, D. M. Blake, J. A. Fennel, J. E. Boulter, L. M. Vargo, Heterogeneous photocatalysis for control of volatile organic compound in indoor air, J. Air.Waste Manag. Assoc. 46 (1996) 891–898.
[10]T. N. Obee, Potooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor, Environmental Science & Technology 30 (1996) 3579–3584.
[11]王國華,「以UV/TiO2程序處理氣相中三氯乙烯之研究」,國立中興大學環境工程學系碩士論文,(1998)
[12]馬志明,「以紫外線/二氧化鈦程序分別處理氣相三氯乙烯污染反應行為之研究」,國立台灣科技大學化學工程技術研究所碩士論文,(1998)
[13]C. H. Hung, B. J.Marinas, Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films, Environmental Science & Technology 31 (1997) 562–568.
[14]K. Hofstadler, R. Bauer, S. Novalic, G. Heisler, New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fased-silica glass fiber, Environmental Science & Technology 28 (1994) 670–674.
[15]S. Hideki, K. Hajime, S. Masuo, A. Masahiki, Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition, Langmuir 14 (1998) 2208–2212.
[16]Z. S. Hu, J. X. Dong, G. X. Chen, Preparation of nanometer titanium oxide with n-butanol supercritical drying, Powder Technology 101 (1999) 205–210.
[17]K. Vinodgopal, P. V. Kamat, Enhanced rated of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin film, Environmental Science & Technology 29 (1995) 841–845.
[18]N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzctti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysted : chemical evidence for electron and hole transfer between coupled semiconductors, Journal of Photochemistry and Potobiology A : Chem. 85 (1995) 247–255.
[19]T. Tsuru, K.N. T., T. Yomohisa, M. Asaeda, A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous menbranes, Journal of Membrane Science 280 (2006) 156–162.
[20]J. Yang, D. Li, Z. Zhang, Q. Li, H. Wang, A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2, Journal of Photochemistry and Photobiology A: Chemistry 137 (2000) 197–202.
[21]Y. Zhang, G. Xiong, N. Yao, W. Yang, X. Fu, Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol-gel method, Catalysis Today 68 (2001) 89–95.
[22]H. Ichiura, T. Kitaoka, H. Tanaka, Removal of indoor pollutants under UV irradiation by a composite TiO2–zeolite sheet prepared using a papermaking technique, Chemosphere 50 (2003) 79–83.
[23]C. H. Ao, S. C. Lee, J. Z. Yu, J. H. Xu, Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs, Applied Catalysis B: Environmental 54 (2004) 41–50.
[24]F. Shiraishi, D. Ohkubo, K. Toyoda, S. Yamaguchi, Decomposition of formaldehyde in a photocatalytic reactor with a parallel array of light sources, Chemixal Engineering Journal 114 (2005) 153–159.
[25]L. Gea, M. Xu, H. Fang, Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO4–TiO2 thin films under visible-light irradiation, Journal Molecular Catalysis A:Chemical 258 (2006) 68–76.
[26]L. Yang, Z. Liu, J. Shi, Y. Zhang, W. Shangguan, Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes, Separation and Purification Technology 54 (2007) 204–211.
[27]L. Yang, Z. Liu, J. Shi, H. Hu, W. Shangguan, Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde, Catalysis Today 126(2007) 359–368.
[28]Y. Jizuka, T. Kubo, A. Nakahira, D. Onodera, N. Ozawa, T. Yao, Development of environmentally friendly photocatalyst with nano-size pore structure coated with thin Ti-oxide, Applied Catalysis B:Environmental 76 (2007) 51–56.
[29]R. C. W. Lam, M. K. H. Leung, D. Y. C. Leung, L. L. P. Vrijmoed, W. C. Yam, S. P. Ng, Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film, Solar Energy Materials & Solar Cells 91 (2007) 54–61.
[30]T. X. Liu , F. B. Li, X. Z. Li, TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase, Journal of Hazardous Materials 152 (2008) 347–355.
[31]F. Shiraishi, S. Ikeda, N. Kamikariya, Photocatalytic decompositions of gaseous HCHO over thin films of anatase titanium oxide converted from amorphous in a heated air and in an aqueous solution of hydrogen peroxide, Chemical Engineering Journal 148 (2009) 234–241.
[32]S. Photong, V. Boonamnuayvitaya, Preparation and characterization of amine-functionalized SiO2/TiO2 films for formaldehyde degradation, Applied Surface Science 255 (2009) 9311–9315.
[33]L. Wang, M. Sakurai, H. Kameyama, Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature, Journal of Hazardous Materials 167 (2009) 399–405.
[34]B. D. Stojanovic, Z. V. Marinkovic, G. O. Brankovic, E. Fidancevska, Evaluation of kinetic data for crystallization of TiO2 prepared by hydrolysis method, Journal of Thermal Analysis and Calorimetry 60 (2000) 595–604.
[35]Y. Ikuma, H. Bessho, Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst, International Journal of Hydrogen Energy 32 (2007) 2689 – 2692.
[36]J. D. Hanawalt, H. W. Rinn, L. K. Frevel, Chemical analysis by X-Ray diffraction, Analytical Chemistry, 10 (1938) 457–512.
[37]G. R. Levi, C. Fontana, Oxides of palladium, Gazzetta Chimica Italiana 56 (1926) 388–396.
[38]J. Kumar, R. Saxena, Formation of NaCl-and Cu2O-type oxides of platinum and palladium on carbon and alumina support films, Journal of the Less-Common Metals 147 (1989) 59–71.
[39]H. H. Ou, S. L. Lo, Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene, Journal of Molecular Catalysis A:Chemical 275 (2007) 200¬¬–205.
[40]朱士德,「氧化矽擔載鈀-銅雙金屬觸媒之鍛燒效應研究」, 逢甲
大學化工所碩士論文(1997)。
[41]周其瑋,「利用程溫還原技術探討鈀的化學環境」,清華大學化學
系碩士論文(1998)。
[42]U. S. Ozkan, M. W. Kumthekar, G. Karakas, Characterization and temperature-programmed studies over Pd/TiO2 catalysts for NO reduction with methane, Catalysis Today 40 (1998) 3–14.
[43]L. M. Sikhwivhilu, N. J. Coville, B. M. Pulimaddi, J. Venkatreddy, V. Vishwanathan, Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts, Catalysis Communications 8 (2007) 999–2006.
[44]M. A. Debeila, M. C. Raphulu, E. Mokoena, M. Avalos, V. Petranovskii, N. J. Coville, M. S. Scurrill, The influence of gold on the optical properties of sol-gel derived titaia, Materials Science and Engineering A 396 (2005) 70–76.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top