跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪珩婕
研究生(外文):Heng-Chieh Hung
論文名稱:以氮改質的鉑/二氧化鈦於可見光下分解水製氫之研究
論文名稱(外文):A study of water splitting reaction on Pt/N-TiO2 under visible light irradiation
指導教授:吳仁彰
指導教授(外文):Wu, Ren-Jang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:83
中文關鍵詞:分解水光觸媒二氧化鈦製氫
外文關鍵詞:Hydrogen productionphoto-catalytic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要將二氧化鈦於自製的過程中,摻雜入含氮的化合物,以氮來改質二氧化鈦光觸媒,再用含浸法於二氧化鈦表面含浸Pt離子,製備一系列N-TiO2光觸媒。在可見光的範圍內,純的自製二氧化鈦是沒有氫氣的生成,而以含浸法將鉑含浸至改質過的二氧化鈦的表面上,由於鉑具有引導電子的效能,可使氫氣產率普遍獲得提升。
系統以300 W高壓水銀燈作為反應的光源,且於反應器加上可濾掉波長400 nm以下的濾光片,以確保反應的光源皆在可見光區內。反應器的材質為Pyrex玻璃,內裝250 mL 10vol%之甲醇水溶液及0.5g的光觸媒。
實驗結果顯示0.03 wt% Pt/TiO2單位時間氫氣產率達15.36 μ mol/1h.1g,若為N改質的二氧化鈦產氫的效果可提高,0.03 wt% Pt/N-TiO2可達17.1μ mol/1h.1g。製備光觸媒的過程中,會因不同氮化合物的來源,單位時間內氫氣的產量,而有明顯的差異,產氫效果以Ammonia較穩定。改變不同鈦和氮的莫耳比會有提升氫氣的產量,而N/Ti=6為最佳比例,在單位時間內氫氣的產量最高可達到40.8 μ mol/1h.1g。
The purpose of this research is to investigate the process of dopping nitrides to titanium dioxide and the subsequent change in the structure of titanium dioxide on impregnation of platinum to the surface, in order to create a set of photo-catalytic N-TiO2. Within visible light irradiation, pure titanium dioxide does not produce to any hydrogen but impregnate platinum cation the surface of Titanium dioxide. Since Platinum has the ability to emit electrically this consequently improves the yield of Hydrogen.
The photo-catalytic activities of Pt/N-TiO2 for water splitting reaction under visible light irradiation were investigated. The photo-catalytic reaction was carried out in a Pyrex glass reactor equipped with cooling water. A 300W mercury arc lamp was mounted on the reactor and a filter was added to eliminate any wave under 400 nm. photo-catalytic reaction of water splitting was performed in 250 ml methanol solution (10 vol%) containing about 0.5 g catalyst at room temperature.
The results have shown that the yields of H2 on 03 wt% Pt/TiO2 were 15.36 μ mol/1h.1g, which was emitted by N-TiO2 which improved at 0.03 wt% Pt/N-TiO2 leading to 17.1μ mol/1h.1g. During the process of making photo-catalysis, there are different outputs of hydrogen production within certain period of time due to the source. Among all different ways of hydrogen production, Ammonia is the most stable one. However changing mole percentage of Ti and N can improve the output of hydrogen production, N/Ti =6 is the best ratio. In addition, output of hydrogen yield could up must to 40.8 μ mol/1h.1g.
中文摘要 I
謝誌 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章、緒論 1
1-1前言 1
1-2觸媒材料簡介 3
1-2-1 二氧化鈦(TiO2)簡介 3
1-2-2鉑金屬簡介 5
1-3光催化反應 6
1-3-1文獻回顧 6
1-3-2光催化實驗原理 19
1-3-3 犧牲試劑 21
1-4研究目的 22
第二章、實驗方法 23
2-1 實驗藥品 23
2-2 實驗儀器 24
2-2-1 實驗採用的光源 24
2-2-2X光繞射分析儀(XRD) 25
2-2-3穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 27
2-2-4程溫還原分析儀(Temperature-programmed reduction,TPR) 30
2-2-5表面積測定儀 32
2-2-6氣相層析儀(GC) 36
2-2-7 光催化反應實驗步驟 37
2-2-8氫氣校正檢量線 40
2-3 觸媒製備流程 42
2-3-1 奈米碳管酸處理步驟 42
2-3-2 CNT-TiO2(sol-gel法自製)觸媒製備步驟 43
2-3-3 N-TiO2(自製)觸媒製備步驟 44
2-3-4含浸法觸媒製備步驟 45
第三章、實驗數據與結果討論 46
3-1 XRD繞射圖譜 46
3-2 觸媒之TEM觀察結果 48
3-3 程溫還原(TPR)實驗結果 54
3-4表面積測定 58
3-5 光觸媒實驗結果 60
3-5-1 不同種類光觸媒之實驗結果 60
3-5-2二氧化鈦以N改質後的實驗結果 61
3-5-3改變鍛燒溫度之實驗結果 62
3-5-4改變不同Ti和N的來源之實驗結果 63
3-5-5改變不同N的來源之實驗結果 65
3-5-6改變不同Ti和 N的比例之實驗結果 66
3-5-7改變不同觸媒克數之實驗結果 68
3-6量子產率 69
3-7反應機構討論 71
第四章、結論 74
第五章、未來展望 76
參考文獻 77
[1]曲新生、陳發林編著,氫能技術 The Hydrogen Technology,(2006).
[2]毛宗強編著,張勝雄,管鴻,林矩民,王鴻猷編修,氫能-21世紀的綠色能源,(2008).
[3]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(1972)37-38.
[4]H. Cheng, J. Ma, Z. Zhao, L. Qi, Chemistry of Materials, 7(1995)663.
[5]K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, Bulletin of the Chemical Society of Japan, 58(1985)2015.
[6]BK Vainshtein, WM Fridkin, VL Indenbom, Structur of Crystals. Berlin: Macmillan India Ltd. (1994).
[7]AL. Linsebigler, G. Lu, JT Yates Jr, Photocatalysis on TiO2 Surface: q Principles, Mechanisms, and Selected Results, Chemical Review, 95(1995)735-758.
[8]洪茂德,鉑觸媒之催化性質:嫁接TiO2之角色 ,國立中正大學碩士論文,(2005).
[9]曲新生、陳發林、呂錫民編著,產氫與儲氫技術 The hydrogen production and storage technology,(2007).
[10]A. Kudo, Development of photocatalyst materials for water splitting, International Journal of Hydrogen Energy, 31(2006) 197-202.
[11]T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol–gel process with surfactant template, International Journal of Hydrogen Energy, 31(2006)786–796.
[12]R.J. Wu, Y.D. Ju, and C.C. Jeng, Promotion of Generation of Hydrogen by Splitting of Water by CNT Over Pt/TiO2 Catalysts, Journal of anoscience and Nanotechnology, 10(2010)1-8.
[13]A. Kudo, I. Tsuji, Hideki Kato, AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation, Chem. Commun, (2002)1958–1959.
[14]K. Sayamaa, K. Mukasab, R. Abea, Y. Abeb, H. Arakawa, A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis, Journal of Photochemistry and Photobiology A: Chemistry, 148(2002)71–77.
[15]J. Ye , Z. Zou , M. Oshikiri , A. Matsushita, M. Shimoda, M. Imai, T. Shishido, A novel hydrogen- evolving photocatalyst InVO4 active under visible light irradiation, Chemical Physics Letters, 356(2002) 221–226.
[16]D. Wang , Z. Zou , J. Ye, A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation, Chemical Physics Letters, 373(2003)191–196.
[17]J. Ye, Z. Zou, A. Matsushita, A novel series of water splitting photocatalysts NiM2O6 (M = Nb; Ta) active under visible light, International Journal of Hydrogen Energy, 28(2003)651–655.
[18]Z. Zou, H. Arakawa, Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semi- conductor photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 158(2003)145–162.
[19]D. W. Hwang, H. G. Kim, J. S. Jang, S. W. Bae, S. M. Ji, J. S. Lee, Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation, Catalysis Today, 93–95(2004)845–850.
[20]T. Takata, A. Tanaka, M. Hara, J. N. Kondo, K.i Domen, Recent progress of photocatalysts for overall water splitting, Catalysis Today, 44(1998)17-26.
[21]T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, Photocatalytic oxidation of water on TiO2-coated WO3 Particles by Visible light using Iron(III) ions as electron acceptor, Journal of Photochemistry and Photobiology A: Chemistry, 118(1998)41-44.
[22]Z. Jin, X. Zhang, Y. Li, S. Li, G. Lu, 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation, Catalysis Communications 8, (2007)1267–1273.
[23]J. S. Jang, W. Li , S. H. Oh , J. S. Lee . “Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light ”, Chemical Physics Letters, 425(2006)278–282.
[24]J. S. Jang, H. G. Kim, P. H. Borse, J. S. Lee.“Simultaneous hydrogen production and decomposition ofH2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation”, International Journal of Hydrogen Energy, 32(2007)4786-4791.
[25]J. S. Jang, S. M. Ji, S. W. Bae, H. C. Son, J. S. Lee. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥420 nm) , Journal of Photochemistry and Photobiology A: Chemistry,188 (2007)112–119.
[26]N. Dubey, S. S. Rayalu, N. K. Labhsetwar, R. R. Naidu, R. V. Chatti, S. Devotta, Photocatalytic properties of zeolite- based materials for the photoreduction of methyl orange, Applied Catalysis A: General, 303(2006)152–157.
[27]N. Dubey, N. K. Labhsetwar, S. Devotta, S. S. Rayalu , Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst , Catalysis Today, 129(2007)428–434.
[28]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 293(2001)269–271.
[29]J.Yuan, M. Chen, J. Shi,W. Shangguan. “Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride”, International Journal of Hydrogen Energ , 31 (2006)1326-1331.
[30]H.J.F. Jansen, A. J. Freeman, Total energy full potential linearized augmented plane wave (FLAPW) method for bulk solids: electronic and structural properties of tungsten, Phys. Rev., B30(1984) 561-569.
[31]L.H. Kao, T.C. Hsu , H.Y. Lu, Sol–gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment, Journal of Colloid and Interface Science, 316(2007)160–167.
[32]P. Cheng,C. Deng, M. Gu, X. Dai, Effect of urea on the photoactivity of titania powder prepared by sol–gel method, Materials Chemistry and Physics, 107(2008)77–81.
[33]Y. Liu , L. Guo, W. Yan, H. Liu, A composite visible-light photocatalyst for hydrogen production, Journal of Power Sources, 159(2006)1300–1304.
[34]H. Yang , L. Guo, W. Yan , H. Liu, A novel composite photocatalyst for water splitting hydrogen production, Journal of Power Sources, 159(2006)1305–1309.
[35]黃繹倫,兩微乳膠技術製備奈米Pt/TiO2-XNX微粉應用於甲醇/水裂解產氫之研究,(2007).
[36]T. Sreethawong , S. Laehsalee , S. Chavadej, Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation, Catalysis Communications, 10(2009)538–543.
[37]S. Tawkaew, S. Yin, T. Sato, Photoreduction of nitrate ion and photoevolution of hydrogen on unsupported TiO2 and TiO2 pillared H4Nb6O17 nanocomposites, International Journal of Inorganic Materials, 3(2001)855–859.
[38]J.J. Zou, C.J. Liu, K.L. Yu, D.G. Cheng, Y.P. Zhang, F. He, H.Y. Du, L. Cui, Highly efficient Pt/TiO2 photo-catalyst prepared by plasma-enhanced impregnation method, Chemical Physics Letters, 400(2004)520–523.
[39]A. G.´ ska, J. Walendziewski, Photocatalytic Water Splitting over Pt-TiO2 in the Presence of Sacrificial Reagents. Energy & Fuels, 19 (2005)1143-1147.
[40]陳俊吉,金屬氧化物半導體在可見光分解水製氫之研究,國立成功大學碩士論文,(2005).
[41]李之瑜,奈米晶體氧化鋁:鑑定與催化反應,東海大學碩士論文,(2005).
[42]Hanawalt. et al., Anal. Chem., 10(1938)475
[43]張家棋,鉑金屬觸媒氧氯化再分散最適化條件之探討,國立中正大學碩士論文,(2003).
[44]Mills et.al., Adler et.al.,(1960)
[45]Brown et al., University of Western Ontario, London, Ontario Canada., Private Communication, (1975)
[46]J.H. Jang, S.C. Lee, D.J. Kim, M. Kang, S.J. Choung, Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx, Applied Catalysis A: General, 286(2005)36–43.
[47]黃華鋒,鍛燒處理對支撐性鉑觸媒的影響,國立清華大學碩士論文,(2003).
[48]W. S. Epling, P. K. Cheekatamarla, A. M. Lane, Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams, Chemical Engineering Journal, 93(2003)61–68.
[49]C. Contescu, D. Macovei, C. Craiu, C. Teodorescu, J. A. Schwarz, Thermal Induced Evolution of Chlorine-Containing Precursors in Impregnated Pd/Al2O3 Catalysts, Langmuir, 11(1996)2031-2040.
[50]江宏毅,Pt/TiO2-C在濕式氧化之催化行為,國立中正大學碩士論文,2005.
[51]Eter Atkins‧Julio de paula, Atkin’ physical chemistry, P 8TH edition, 859.
[52]杜修豪,以溶膠凝膠法製備氮氟共同摻雜二氧化鈦奈米可見光光觸媒之特性研究,(2009).
[53]J.J. Zou, C. Chen, C.J. Lin, Y.P. Zhang, Y. Han, L. Cui, Pt nanoparticles on TiO2 with novel metal-semiconductor interface as highly efficient photocatalyst, Materials Letters, 59(2005)3437- 3440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊