(3.238.7.202) 您好!臺灣時間:2021/02/26 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇昭萍
研究生(外文):Chao-Ping Su
論文名稱:冷加飢餓下腸炎弧菌的形態變化與壓力耐受性的關係
論文名稱(外文):Morphological changes and stress resistance of Vibrio parahaemolyticus under cold and starvation stresses
指導教授:黃顯宗黃顯宗引用關係
指導教授(外文):Hin-Chung Wong
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:87
中文關鍵詞:腸炎弧菌冷加飢餓形態變化
外文關鍵詞:vibrio parahaemolyticusmorphological changes
相關次數:
  • 被引用被引用:5
  • 點閱點閱:271
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
前人研究發現,約有30 多種菌在遭受環境壓力的改變時會進入一種活而不長
的狀態,而壓力來源主要為低溫與飢餓的環境。在過去,通常是探討進入活而不長
狀態後菌體的外形改變或對壓力的耐受性,也有針對壓力處理前期去觀察菌體的形
態變化及基因表現情形,但對於整個活而不長過程的描述是缺少的。因此,本實驗
觀察冷加飢餓誘導進入活而不長過程中的不同時期,選取誘導第0 天、產生許多形
態變異的第3 天、誘導第14 天及進入活而不長後的四個時間點,並將其置於室溫
恢復1-2 天,以光學顯微鏡、掃描式及穿透式電子顯微鏡觀察菌體的形態變化,並
以菌體在環境中可能遭遇的不同壓力進行耐受性的測試,探討兩者之間有無關聯。
實驗結果發現,冷加飢餓誘導3 天後菌體出現許多兔耳狀及棒槌狀等的形態變異,
此時菌體膨大,之後慢慢變小變圓,直到進入VBNC。在穿透式電子顯微鏡的觀察
中,可清楚看到在誘導的過程中菌體內部物質由原先的濃稠逐漸轉為疏鬆,但回溫
後,除了少數菌體之外其餘皆可恢復,且細胞壁有明顯增厚的現象。而在熱、膽鹽
及低鹽處理中,回溫後的菌體對壓力的耐受性皆明顯提高,而在氧化壓力下,除了
第0 天回溫的菌體耐受性提高之外,其餘回溫後的耐受性皆明顯下降。冷加飢餓壓
力下菌體產生的形態變異可能與細胞骨架的基因表現有關,而對壓力耐受性的改變
和細胞壁厚度有無關聯則需進一步的實驗去探討。
Combination of nutrient deprivation and low temperature stresses has been shown to be
the main causes for inducing viable but noncultirable (VBNC) state in some pathogenic
bacteria. Morphological changes and stress susceptibility of the cells in the VBNC state or
during the initial period of stress application have been investigated. In this study, we
focused on the process of the induction of VBNC state contributing to the morphological
changes and stress susceptibility. At different intervals of VBNC induction, the cells were
shifted to temperature up-shift treatment for 1-2 days, and morphological changes were
observed by light, scanning and transmission electron microscopies (SEM and TEM).
Under concomitant cold and carbon starvation for 3 days, cell shape changed from rod-like
to coccoid with budding, dumbbell and rabbit-ear-like shapes. Electron microscopy
revealed that a thick peptidoglycan cell wall in the temperature-upshifted cells. Except for
H2O2, the resistance to bile salt, heat and low salinity was also increased in the
temperature-upshifted cells. Alteration of the morphology of cells under cold and
starvation may be associated with the expression of cytoskeleton genes, and the effect of
thickening cell wall on the tolerance of temperature-upshifted cells needs further
exploration.
表目錄 ………………………………………………………………………… VI
圖目錄 ………………………………………………………………………… VI
附圖目錄 ………………………………………………………………………… VIII
中文摘要 ………………………………………………………………………… 1
英文摘要 ………………………………………………………………………… 2
第壹章 緒論 …………………………………………………………………… 3
第ㄧ節 腸炎弧菌簡介 ……………………………………………………… 4
ㄧ、ㄧ般特性及分類特性 ……………………………………………… 4
二、抗原性 ……………………………………………………………… 5
三、分佈情形 …………………………………………………………… 6
四、致病情形 …………………………………………………………… 7
五、預防與治療 ………………………………………………………… 8
第二節 環境壓力對菌體的影響…………………………………………… 8
ㄧ、張壓壓力 …………………………………………………………… 8
二、膽鹽 ………………………………………………………………… 9
三、溫度 ………………………………………………………………… 11
四、飢餓 ……………………………………………………………… 12
五、過氧化物 …………………………………………………………… 14
第三節 細菌的活而不長狀態 ……………………………………………… 14
ㄧ、活而不長菌體的形成 ……………………………………………… 15
二、活而不長狀態下菌體的形態變化 ……………………………… 16
三、活而不長狀態的恢復 ……………………………………………… 17
四、活而不長狀態對致病性的影響 …………………………………… 19
第四節 腸炎弧菌的活而不長狀態 ………………………………………… 20
一、腸炎弧菌活而不長的形態變化……………………………………… 21
二、腸炎弧菌活而不長的耐受性 22
三、腸炎弧菌活而不長的恢復 ………………………………………… 22
四、腸炎弧菌活而不長的致病性 ……………………………………… 23
第貳章 研究目的與架構 ………………………………………………………… 25
第参章 材料與方法 …………………………………………………………… 26
第一節 菌種與保存 ………………………………………………………… 26
一、菌株 ………………………………………………………………… 26
二、菌種保存 …………………………………………………………… 26
1、Working stock ………………………………………………… 26
2、短期保存 ……………………………………………………… 26
3、長期保存 ……………………………………………………… 27
第二節 藥品與器材設備 …………………………………………………… 27
第三節 生長曲線之測定 …………………………………………………… 28
ㄧ、培養基與誘導液成份 ……………………………………………… 28
1、LB-2% NaCl …………………………………………………… 28
2、Thiosulfate-citrate-bile-sucrose agar …………………………… 29
3、Modified v-5 (MV-5) medium ………………………………… 29
4、Modified v-5 without mannitol medium ………………………… 30
5、PBS-0.2% NaCl ………………………………………………… 30
第四節 顯微鏡觀察 ………………………………………………………… 30
ㄧ、位相差光學顯微鏡 ………………………………………………… 30
二、螢光染劑染色 ……………………………………………………… 31
三、螢光顯微鏡記數活菌數…………………………………………… 31
四、穿透式電子顯微鏡樣品製備……………………………………… 32
五、穿透式電子顯微鏡觀察…………………………………………… 33
六、掃描式電子顯微鏡樣品製備及觀察 ……………………………… 33
七、菌體長度與細胞壁厚度的測量與統計…………………………… 33
1、菌體長度與細胞壁厚度的測量 ……………………………… 33
2、取樣與統計 …………………………………………………… 34
第五節 冷加飢餓誘導後對環境壓力耐受性的分析 ……………………… 35
ㄧ、冷加飢餓誘導的處理 ……………………………………………… 35
二、對高溫的耐受性 …………………………………………………… 36
三、對H2O2 的耐受性 …………………………………………………… 36
四、對膽鹽的耐受性 …………………………………………………… 36
五、對低鹽的耐受性 …………………………………………………… 37
第肆章 結果 ……………………………………………………………………… 38
第一節 細菌的生長情形 …………………………………………………… 38
ㄧ、腸炎弧菌Vp1137 的生長曲線 …………………………………… 38
二、冷加飢餓誘導不同天數之菌數變化 ……………………………… 38
第二節 冷加飢餓誘導下菌體的形態變化………………………………… 38
一、光學顯微鏡觀察結果 ……………………………………………… 38
二、電子顯微鏡觀察結果 ……………………………………………… 40
1、掃描式電子顯微鏡 …………………………………………… 40
2、穿透式電子顯微鏡 …………………………………………… 41
三、冷加飢餓誘導不同天數後菌體長度之變化 ……………………… 42
四、冷加飢餓誘導不同天數後菌體細胞壁厚度之變化 ……………… 43
第三節 冷加飢餓誘導不同時期菌體對壓力的耐受情形………………… 43
一、對熱處理的耐受性 ………………………………………………… 43
二、對H2O2 處理的耐受性……………………………………………… 43
三、對膽鹽處理的耐受性 ……………………………………………… 44
四、對低鹽處理的耐受性 ……………………………………………… 44
第伍章 討論 ……………………………………………………………………… 45
第一節 冷加飢餓誘導對菌體的影響……………………………………… 45
一、對細菌生長的影響 ………………………………………………… 45
二、對細菌形態變化的影響…………………………………………… 46
第二節 冷加飢餓誘導對壓力耐受性的影響 ……………………………… 49
一、對高溫耐受性的影響 ……………………………………………… 49
二、對H2O2 耐受性的影響……………………………………………… 49
三、對膽鹽耐受性的影響 ……………………………………………… 50
四、對低鹽耐受性的影響 ……………………………………………… 51
第六章 參考文獻 ………………………………………………………………… 52
表目錄
表一、冷加飢餓誘導下菌體細胞壁厚度的變化及對於壓力耐受性的增減 … 60
圖目錄
圖一、腸炎弧菌 Vp1137 之生長曲線 ………………………………………… 61
圖二、腸炎弧菌Vp1137 冷加飢餓誘導不同天數之菌數變化 ……………… 62
圖三、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程光學顯微鏡觀察結
果 …………………………………………………………………………… 63
圖四、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程掃描式電子顯微鏡
觀察結果 …………………………………………………………………… 64
圖五、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程掃描式電子顯微鏡
觀察結果 …………………………………………………………………… 65
圖六、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程掃描式電子顯微鏡
觀察結果 …………………………………………………………………… 66
圖七、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程掃描式電子顯微觀
察結果 ……………………………………………………………………… 67
圖八、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程穿透式電子顯微鏡
觀察結果 ……………………………………………………………… 68
圖九、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程穿透式電子顯微
鏡觀察結果 ………………………………………………………………
69
圖十、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程穿透式電子顯微鏡
觀察結果 …………………………………………………………………… 70
圖十一、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程穿透式電子顯微
鏡觀察結果 ……………………………………………………………… 71
圖十二、腸炎弧菌Vp1137 經冷加飢餓誘導進入VBNC 過程穿透式電子顯微
鏡觀察結果……………………………………………………………… 72
圖十三、腸炎弧菌Vp1137 經冷加飢餓誘導不同天數後菌體長度之變化 … 73
圖十四、腸炎弧菌Vp1137 經冷加飢餓誘導不同天數後菌體細胞壁厚度之變
化 ……………………………………………………………………… 74
圖十五、腸炎弧菌Vp1137 經冷加飢餓誘導不同天數後以50 oC 熱處理結果
………………………………………………………………………… 75
圖十六、腸炎弧菌Vp1137 經冷加飢餓誘導不同天數後以0.03% H2O2 處理結
果 ………………………………………………………………………… 76
圖十七、腸炎弧菌Vp1137 經冷加飢餓誘導不同天數後以2% 膽鹽處理結果
………………………………………………………………………….. 77
圖十八、腸炎弧菌Vp1137 經冷加飢餓誘導不同天數後以PBS-0.2% NaCl
處理結果 ……………………………………………………………… 78
附圖目錄
附圖一、VayTek Image 軟體使用介面 ………………………………………… 34
蔡土及.(1997) 革蘭陰性菌的細胞圍與細菌對惡劣環境的抵抗性及殘存能力. 生命科
學簡訊. 11: 6-8.
沈志聰.(2000) 腸炎弧菌活而不長菌體之生物化學特性分析. 東吳大學微生物系碩士
論文.台北.
王佩莉.(2000) 腸炎弧菌活而不長菌體的形成與回復. 東吳大學微生物系碩士論文.台
北.
陳少妍.(2006) 環境壓力下腸炎弧菌形態之變化東吳大學微生物系碩士論文.台北.
Albertson, N. H. & Nystrom, T. (1994). Effects of starvation for exogenous carbon on functional mRNA
stability and rate of peptide chain elongation in Escherichia coli. FEMS Microbiol. Lett. 117, 181-187.
Albertson, N. H., Nystrom, T., & Kjelleberg, S. (1990). Starvation-induced modulations in binding
protein-dependent glucose transport by the marine Vibrio sp. S14. FEMS Microbiol. Lett. 58, 205-209.
Bae, H. C., Cota-Robles, E. H., & Casida, L. E. (1972). Microflora of Soil as Viewed by Transmission
Electron Microscopy. Appl. Microbiol. 23, 637-648.
Bates,T.C. and Oliver,J.D. (2004) The viable but nonculturable state of Kanagawa positive and negative
strains of Vibrio parahaemolyticus. J. Microbiol. 42, 74-79.
Bej, A. K., Patterson, D. P., Brasher, C. W., Vickery, M. C., Jones, D. D., & Kaysner, C. A. (1999).
Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR
amplification of tl, tdh and trh. J. Microbiol. Methods 36, 215-225.
Bertone, S., Giacomini, M., Ruggiero, C., Piccarolo, C., & Calegari, L. (1996). Automated Systems for
Identification of Heterotrophic Marine Bacteria on the Basis of Their Fatty Acid Composition. Appl.
Environ. Microbiol. 62, 2122-2132.
Boaretti, M., Lleo, M. M., Bonato, B., Signoretto, C., & Canepari, P. (2003). Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ. Microbiol. 5, 986-996.
Chatterjee, A., Chaudhuri, S., Saha, G., Gupta, S., & Chowdhury, R. (2004b). Effect of bile on the cell
surface permeability barrier and efflux system of Vibrio cholerae. J. Bacteriol. 186, 6809-6814.
Chatterjee, A., Chaudhuri, S., Saha, G., Gupta, S., & Chowdhury, R. (2004a). Effect of bile on the cell
surface permeability barrier and efflux system of Vibrio cholerae. J. Bacteriol. 186, 6809-6814.
Chen, S. Y., Jane, W. N., Chen, Y. S., & Wong, H. C. (2009). Morphological changes of Vibrio
parahaemolyticus under cold and starvation stresses. Int. J. Food Microbiol. 129, 157-165.
Coleman, R., Lowe, P. J., & Billington, D. (1980). Membrane lipid composition and susceptibility to bile
salt damage. Biochim. Biophys. Acta 599, 294-300.
Craig, E. A. & Gross, C. A. (1991). Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16,
135-140.
DiDomenico, B. J., Bugaisky, G. E., & Lindquist, S. (1982). The heat shock response is self-regulated at
both the transcriptional and posttranscriptional levels. Cell 31, 593-603.
Farr, S. B. & Kogoma, T. (1991). Oxidative stress responses in Escherichia coli and Salmonella
typhimurium. Microbiol. Rev. 55, 561-585.
Felter,R.A., Colwell,R.R. and Chapman,G.B. (1969) Morphology and round body fermation in Vibrio
marinus. J. Bacteriol. 99, 326-335.
Fujisawa, T. & Mori, M. (1996b). Influence of bile salts on beta-glucuronidase activity of intestinal
bacteria. Lett. Appl. Microbiol. 22, 271-274.
Fujisawa, T. & Mori, M. (1996a). Influence of bile salts on beta-glucuronidase activity of intestinal
bacteria. Lett. Appl. Microbiol. 22, 271-274.
Galinski, E. A. (1995). Osmoadaptation in bacteria. Adv. Microb. Physiol 37, 272-328.
Gupta, S. & Chowdhury, R. (1997). Bile affects production of virulence factors and motility of Vibrio
cholerae. Infect. Immun. 65, 1131-1134.
Gutierrez, C., Abee, T., & Booth, I. R. (1995). Physiology of the osmotic stress response in
microorganisms. Int. J. Food Microbiol. 28, 233-244.
Heuman, D. M., Bajaj, R. S., & Lin, Q. (1996b). Adsorption of mixtures of bile salt taurine conjugates to
lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. J. Lipid Res. 37,562-573.
Heuman, D. M., Bajaj, R. S., & Lin, Q. (1996a). Adsorption of mixtures of bile salt taurine conjugates to
lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. J. Lipid Res. 37,
562-573.
Hoffmann, T. J., Nelson, B., Darouiche, R., & Rosen, T. (1988). Vibrio vulnificus septicemia. Arch.
Intern. Med. 148, 1825-1827.
Honda, T., Ni, Y. X., & Miwatani, T. (1988). Purification and characterization of a hemolysin produced
by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the
thermostable direct hemolysin. Infect. Immun. 56, 961-965.
Jiang, X. & Chai, T. J. (1996). Survival of Vibrio parahaemolyticus at low temperatures under starvation
conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62,
1300-1305.
Johnson, D. E., Weinberg, L., Ciarkowski, J., West, P., & Colwell, R. R. (1984). Wound infection caused
by Kanagawa-negative Vibrio parahaemolyticus
2. Journal of Clinical Microbiology 20, 811-812.
Kaneko, T. & Colwell, R. R. (1975c). Adsorption of Vibrio parahaemolyticus onto chitin and copepods.
Appl. Microbiol. 29, 269-274.
Kaneko, T. & Colwell, R. R. (1975b). Adsorption of Vibrio parahaemolyticus onto chitin and copepods.
Appl. Microbiol. 29, 269-274.
Kaneko, T. & Colwell, R. R. (1975a). Adsorption of Vibrio parahaemolyticus onto chitin and copepods.
Appl. Microbiol. 29, 269-274.
Kaysner, C. A., Abeyta, C., Jr., Trost, P. A., Wetherington, J. H., Jinneman, K. C., Hill, W. E., & Wekell,
M. M. (1994). Urea hydrolysis can predict the potential pathogenicity of Vibrio parahaemolyticus strains
isolated in the Pacific Northwest. Appl. Environ. Microbiol. 60, 3020-3022.
Kjelleberg, S., Albertson, N., Flardh, K., Holmquist, L., Jouper-Jaan, A., Marouga, R., Ostling, J.,
Svenblad, B., & Weichart, D. (1993). How do non-differentiating bacteria adapt to starvation? Antonie
Van Leeuwenhoek 63, 333-341.
Koga, T. & Takumi, K. (1995). Nutrient starvation induces cross protection against heat, osmotic, or
H2O2 challenge in Vibrio parahaemolyticus. Microbiol. Immunol. 39, 213-215.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004a). Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004b). Role of
catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004c). Role of
catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004d). Role of
catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
LaRossa, R. A. & Van Dyk, T. K. (1991). Physiological roles of the DnaK and GroE stress proteins:
catalysts of protein folding or macromolecular sponges? Mol. Microbiol. 5, 529-534.
Leenanon, B. & Drake, M. A. (2001). Acid stress, starvation, and cold stress affect poststress behavior of
Escherichia coli O157:H7 and nonpathogenic Escherichia coli. J. Food Prot. 64, 970-974.
Leverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P., & Jan, G. (2003). Susceptibility and
adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis.
Appl. Environ. Microbiol. 69, 3809-3818.
Lin, C., Yu, R. C., & Chou, C. C. (2004a). Susceptibility of Vibrio parahaemolyticus to various
environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92, 207-215.
Lin, C., Yu, R. C., & Chou, C. C. (2004c). Susceptibility of Vibrio parahaemolyticus to various
environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92, 207-215.
Lin, C., Yu, R. C., & Chou, C. C. (2004b). Susceptibility of Vibrio parahaemolyticus to various
environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92, 207-215.
Linder, K. & Oliver, J. D. (1989a). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Linder, K. & Oliver, J. D. (1989b). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Linder, K. & Oliver, J. D. (1989d). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Linder, K. & Oliver, J. D. (1989c). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Lleo, M. M., Bonato, B., Tafi, M. C., Signoretto, C., Boaretti, M., & Canepari, P. (2001). Resuscitation
rate in different enterococcal species in the viable but non-culturable state. J. Appl. Microbiol. 91,
1095-1102.
McCarter, L. & Silverman, M. (1989). Iron regulation of swarmer cell differentiation of Vibrio
parahaemolyticus. J. Bacteriol. 171, 731-736.
McGovern, V. P. & Oliver, J. D. (1995). Induction of cold-responsive proteins in Vibrio vulnificus. J.
Bacteriol. 177, 4131-4133.
Miller, A. J., Bayles, D. O., & Eblen, B. S. (2000). Cold shock induction of thermal sensitivity in Listeria
monocytogenes. Appl. Environ. Microbiol. 66, 4345-4350.
Mizunoe, Y., Wai, S. N., Ishikawa, T., Takade, A., & Yoshida, S. (2000c). Resuscitation of viable but
nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS
Microbiol. Lett. 186, 115-120.
Mizunoe, Y., Wai, S. N., Ishikawa, T., Takade, A., & Yoshida, S. (2000a). Resuscitation of viable but
nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS
Microbiol. Lett. 186, 115-120.
Mizunoe, Y., Wai, S. N., Ishikawa, T., Takade, A., & Yoshida, S. (2000b). Resuscitation of viable but
nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS
Microbiol. Lett. 186, 115-120.
Nilsson, L., Oliver, J. D., & Kjelleberg, S. (1991). Resuscitation of Vibrio vulnificus from the viable but
nonculturable state. J. Bacteriol. 173, 5054-5059.
Noh, D. O. & Gilliland, S. E. (1993b). Influence of bile on cellular integrity and beta-galactosidase
activity of Lactobacillus acidophilus. J. Dairy Sci. 76, 1253-1259.
Noh, D. O. & Gilliland, S. E. (1993a). Influence of bile on cellular integrity and beta-galactosidase
activity of Lactobacillus acidophilus. J. Dairy Sci. 76, 1253-1259.
Novitsky, J. A. & Morita, R. Y. (1976). Morphological characterization of small cells resulting from
nutrient starvation of a psychrophilic marine vibrio. Appl. Environ. Microbiol. 32, 617-622.
Nystrom, T., Albertson, N., & Kjelleberg, S. (1988). Synthesis of membrane and periplasmic proteins
during starvation of a marine Vibrio sp. J. Gen. Microbiol. 134, 1645-1651.
Nystrom, T., Flardh, K., & Kjelleberg, S. (1990). Responses to multiple-nutrient starvation in marine
Vibrio sp. strain CCUG 15956. J. Bacteriol. 172, 7085-7097.
Nystrom, T., Olsson, R. M., & Kjelleberg, S. (1992b). Survival, stress resistance, and alterations in
protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients.
Appl. Environ. Microbiol. 58, 55-65.
Nystrom, T., Olsson, R. M., & Kjelleberg, S. (1992a). Survival, stress resistance, and alterations in
protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients.
Appl. Environ. Microbiol. 58, 55-65.
Okuda, J., Ishibashi, M., Abbott, S. L., Janda, J. M., & Nishibuchi, M. (1997). Analysis of the
thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive
strains of Vibrio parahaemolyticus isolated on the West Coast of the United States. J. Clin. Microbiol. 35,
1965-1971.
Oliver, J. D. & Bockian, R. (1995a). In vivo resuscitation, and virulence towards mice, of viable but
nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 2620-2623.
Oliver, J. D. & Bockian, R. (1995b). In vivo resuscitation, and virulence towards mice, of viable but
nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 2620-2623.
Oliver, J. D. & Bockian, R. (1995c). In vivo resuscitation, and virulence towards mice, of viable but
nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 2620-2623.
Oliver, J. D., Nilsson, L., & Kjelleberg, S. (1991b). Formation of nonculturable Vibrio vulnificus cells
and its relationship to the starvation state. Appl. Environ. Microbiol. 57, 2640-2644.
Oliver, J. D., Nilsson, L., & Kjelleberg, S. (1991a). Formation of nonculturable Vibrio vulnificus cells
and its relationship to the starvation state. Appl. Environ. Microbiol. 57, 2640-2644.
Pan, T.-M., Wang, T. K., Lee, C.-L., Chien, S.-W., & Horng, C.-B. (1997). Food-borne disease outbreaks
due to bacteria in Taiwan, 1986 to 1995. Journal of Clinical Microbiology 35, 1260-1262.
Popham,D.L. and Young,K.D. (2003) Role of penicillin-binding proteins in bacterial cell morphogenesis.
Curr. Opin. Microbiol. 6, 594-599.
Provenzano, D. & Klose, K. E. (2000). Altered expression of the ToxR-regulated porins OmpU and
OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization.
Proc. Natl. Acad. Sci. U. S. A 97, 10220-10224.
Rahman, I., Shahamat, M., Chowdhury, M. A., & Colwell, R. R. (1996b). Potential virulence of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 62, 115-120.
Rahman, I., Shahamat, M., Chowdhury, M. A., & Colwell, R. R. (1996a). Potential virulence of viable
but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 62, 115-120.
Reeve, C. A., Amy, P. S., & Matin, A. (1984). Role of protein synthesis in the survival of carbon-starved
Escherichia coli K-12. J. Bacteriol. 160, 1041-1046.
Roth, W. G., Leckie, M. P., & Dietzler, D. N. (1988). Restoration of colony-forming activity in
osmotically stressed Escherichia coli by betaine. Appl. Environ. Microbiol. 54, 3142-3146.
Sakazaki, R., Iwanami, S., & Tamura, K. (1968). Studies on the enteropathogenic, facultatively halophilic
bacterium, Vibrio parahaemolyticus. II. Serological characteristics. Jpn. J. Med. Sci. Biol. 21, 313-324.
Shin, M. G., Shin, J. H., Suh, S. P., Ryang, D. W., & Bae, K. S. (1997). Cellular fatty acid profiles of
ninety-five strains of Vibrio vulnificus isolated from clinical specimens in Korea. J. Gen. Appl. Microbiol.
43, 317-324.
Signoretto, C., Lleo, M. M., Tafi, M. C., & Canepari, P. (2000). Cell wall chemical composition of
Enterococcus faecalis in the viable but nonculturable state. Appl. Environ. Microbiol. 66, 1953-1959.
Su, H. P., Chiu, S. I., Tsai, J. L., Lee, C. L., & Pan, T. M. (2005). Bacterial food-borne illness outbreaks
in northern Taiwan, 1995-2001. J. Infect. Chemother. 11, 146-151.
Svitil, A. L., Cashel, M., & Zyskind, J. W. (1993). Guanosine tetraphosphate inhibits protein synthesis in
vivo. A possible protective mechanism for starvation stress in Escherichia coli. J. Biol. Chem. 268,
2307-2311.
Wai, S. N., Mizunoe, Y., Takade, A., & Yoshida, S. (2000). A comparison of solid and liquid media for
resuscitation of starvation- and low-temperature-induced nonculturable cells of Aeromonas hydrophila.
Arch. Microbiol. 173, 307-310.
Wang, N., Yamanaka, K., & Inouye, M. (1999). CspI, the ninth member of the CspA family of
Escherichia coli, is induced upon cold shock. J. Bacteriol. 181, 1603-1609.
Weichart, D. & Kjelleberg, S. (1996). Stress resistance and recovery potential of culturable and viable but
nonculturable cells of Vibrio vulnificus. Microbiology 142 ( Pt 4), 845-853.
Weichart, D., Oliver, J. D., & Kjelleberg, S. (1992). Low temperature induced non-culturability and
killing of Vibrio vulnificus. FEMS Microbiol. Lett. 79, 205-210.
Whitesides, M. D. & Oliver, J. D. (1997). Resuscitation of Vibrio vulnificus from the Viable but Nonculturable State. Appl. Environ. Microbiol. 63, 1002-1005.
Wong, H. C., Liu, S. H., Ku, L. W., Lee, I. Y., Wang, T. K., Lee, Y. S., Lee, C. L., Kuo, L. P., & Shih, D.
Y. (2000). Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness
outbreaks during 1992 through 1995 in Taiwan. J. Food Prot. 63, 900-906.
Wong, H. C., Lu, K. T., Pan, T. M., Lee, C. L., & Shih, D. Y. (1996). Subspecies typing of Vibrio
parahaemolyticus by pulsed-field gel electrophoresis. J. Clin. Microbiol. 34, 1535-1539.
Wong, H. C., Peng, P. Y., Han, J. M., Chang, C. Y., & Lan, S. L. (1998b). Effect of mild acid treatment
on the survival, enteropathogenicity, and protein production in vibrio parahaemolyticus. Infect. Immun.
66, 3066-3071.
Wong, H. C., Peng, P. Y., Han, J. M., Chang, C. Y., & Lan, S. L. (1998a). Effect of mild acid treatment
on the survival, enteropathogenicity, and protein production in vibrio parahaemolyticus. Infect. Immun.
66, 3066-3071.
Wong, H. C., Peng, P. Y., Lan, S. L., Chen, Y. C., Lu, K. H., Shen, C. T., & Lan, S. F. (2002). Effects of
heat shock on the thermotolerance, protein composition, and toxin production of Vibrio parahaemolyticus.
J. Food Prot. 65, 499-507.
Wong, H. C., Shen, C. T., Chang, C. N., Lee, Y. S., & Oliver, J. D. (2004a). Biochemical and virulence
characterization of viable but nonculturable cells of Vibrio parahaemolyticus. J. Food Prot. 67,
2430-2435.
Wong, H. C. & Wang, P. (2004). Induction of viable but nonculturable state in Vibrio parahaemolyticus
and its susceptibility to environmental stresses. J. Appl. Microbiol. 96, 359-366.
Wong, H. C., Wang, P., Chen, S. Y., & Chiu, S. W. (2004b). Resuscitation of viable but non-culturable
Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol. Lett. 233, 269-275.
Wood, J. M. (1999). Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol.
Biol. Rev. 63, 230-262.
Yamamori, T., Ito, K., Nakamura, Y., & Yura, T. (1978). Transient regulation of protein synthesis in
Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134, 1133-1140.
Yamamori, T. & Yura, T. (1980). Temperature-induced synthesis of specific proteins in Escherichia coli:
evidence for transcriptional control. J. Bacteriol. 142, 843-851.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔