蔡土及.(1997) 革蘭陰性菌的細胞圍與細菌對惡劣環境的抵抗性及殘存能力. 生命科
學簡訊. 11: 6-8.
沈志聰.(2000) 腸炎弧菌活而不長菌體之生物化學特性分析. 東吳大學微生物系碩士
論文.台北.
王佩莉.(2000) 腸炎弧菌活而不長菌體的形成與回復. 東吳大學微生物系碩士論文.台北.
陳少妍.(2006) 環境壓力下腸炎弧菌形態之變化東吳大學微生物系碩士論文.台北.Albertson, N. H. & Nystrom, T. (1994). Effects of starvation for exogenous carbon on functional mRNA
stability and rate of peptide chain elongation in Escherichia coli. FEMS Microbiol. Lett. 117, 181-187.
Albertson, N. H., Nystrom, T., & Kjelleberg, S. (1990). Starvation-induced modulations in binding
protein-dependent glucose transport by the marine Vibrio sp. S14. FEMS Microbiol. Lett. 58, 205-209.
Bae, H. C., Cota-Robles, E. H., & Casida, L. E. (1972). Microflora of Soil as Viewed by Transmission
Electron Microscopy. Appl. Microbiol. 23, 637-648.
Bates,T.C. and Oliver,J.D. (2004) The viable but nonculturable state of Kanagawa positive and negative
strains of Vibrio parahaemolyticus. J. Microbiol. 42, 74-79.
Bej, A. K., Patterson, D. P., Brasher, C. W., Vickery, M. C., Jones, D. D., & Kaysner, C. A. (1999).
Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR
amplification of tl, tdh and trh. J. Microbiol. Methods 36, 215-225.
Bertone, S., Giacomini, M., Ruggiero, C., Piccarolo, C., & Calegari, L. (1996). Automated Systems for
Identification of Heterotrophic Marine Bacteria on the Basis of Their Fatty Acid Composition. Appl.
Environ. Microbiol. 62, 2122-2132.
Boaretti, M., Lleo, M. M., Bonato, B., Signoretto, C., & Canepari, P. (2003). Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ. Microbiol. 5, 986-996.
Chatterjee, A., Chaudhuri, S., Saha, G., Gupta, S., & Chowdhury, R. (2004b). Effect of bile on the cell
surface permeability barrier and efflux system of Vibrio cholerae. J. Bacteriol. 186, 6809-6814.
Chatterjee, A., Chaudhuri, S., Saha, G., Gupta, S., & Chowdhury, R. (2004a). Effect of bile on the cell
surface permeability barrier and efflux system of Vibrio cholerae. J. Bacteriol. 186, 6809-6814.
Chen, S. Y., Jane, W. N., Chen, Y. S., & Wong, H. C. (2009). Morphological changes of Vibrio
parahaemolyticus under cold and starvation stresses. Int. J. Food Microbiol. 129, 157-165.
Coleman, R., Lowe, P. J., & Billington, D. (1980). Membrane lipid composition and susceptibility to bile
salt damage. Biochim. Biophys. Acta 599, 294-300.
Craig, E. A. & Gross, C. A. (1991). Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16,
135-140.
DiDomenico, B. J., Bugaisky, G. E., & Lindquist, S. (1982). The heat shock response is self-regulated at
both the transcriptional and posttranscriptional levels. Cell 31, 593-603.
Farr, S. B. & Kogoma, T. (1991). Oxidative stress responses in Escherichia coli and Salmonella
typhimurium. Microbiol. Rev. 55, 561-585.
Felter,R.A., Colwell,R.R. and Chapman,G.B. (1969) Morphology and round body fermation in Vibrio
marinus. J. Bacteriol. 99, 326-335.
Fujisawa, T. & Mori, M. (1996b). Influence of bile salts on beta-glucuronidase activity of intestinal
bacteria. Lett. Appl. Microbiol. 22, 271-274.
Fujisawa, T. & Mori, M. (1996a). Influence of bile salts on beta-glucuronidase activity of intestinal
bacteria. Lett. Appl. Microbiol. 22, 271-274.
Galinski, E. A. (1995). Osmoadaptation in bacteria. Adv. Microb. Physiol 37, 272-328.
Gupta, S. & Chowdhury, R. (1997). Bile affects production of virulence factors and motility of Vibrio
cholerae. Infect. Immun. 65, 1131-1134.
Gutierrez, C., Abee, T., & Booth, I. R. (1995). Physiology of the osmotic stress response in
microorganisms. Int. J. Food Microbiol. 28, 233-244.
Heuman, D. M., Bajaj, R. S., & Lin, Q. (1996b). Adsorption of mixtures of bile salt taurine conjugates to
lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. J. Lipid Res. 37,562-573.
Heuman, D. M., Bajaj, R. S., & Lin, Q. (1996a). Adsorption of mixtures of bile salt taurine conjugates to
lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. J. Lipid Res. 37,
562-573.
Hoffmann, T. J., Nelson, B., Darouiche, R., & Rosen, T. (1988). Vibrio vulnificus septicemia. Arch.
Intern. Med. 148, 1825-1827.
Honda, T., Ni, Y. X., & Miwatani, T. (1988). Purification and characterization of a hemolysin produced
by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the
thermostable direct hemolysin. Infect. Immun. 56, 961-965.
Jiang, X. & Chai, T. J. (1996). Survival of Vibrio parahaemolyticus at low temperatures under starvation
conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62,
1300-1305.
Johnson, D. E., Weinberg, L., Ciarkowski, J., West, P., & Colwell, R. R. (1984). Wound infection caused
by Kanagawa-negative Vibrio parahaemolyticus
2. Journal of Clinical Microbiology 20, 811-812.
Kaneko, T. & Colwell, R. R. (1975c). Adsorption of Vibrio parahaemolyticus onto chitin and copepods.
Appl. Microbiol. 29, 269-274.
Kaneko, T. & Colwell, R. R. (1975b). Adsorption of Vibrio parahaemolyticus onto chitin and copepods.
Appl. Microbiol. 29, 269-274.
Kaneko, T. & Colwell, R. R. (1975a). Adsorption of Vibrio parahaemolyticus onto chitin and copepods.
Appl. Microbiol. 29, 269-274.
Kaysner, C. A., Abeyta, C., Jr., Trost, P. A., Wetherington, J. H., Jinneman, K. C., Hill, W. E., & Wekell,
M. M. (1994). Urea hydrolysis can predict the potential pathogenicity of Vibrio parahaemolyticus strains
isolated in the Pacific Northwest. Appl. Environ. Microbiol. 60, 3020-3022.
Kjelleberg, S., Albertson, N., Flardh, K., Holmquist, L., Jouper-Jaan, A., Marouga, R., Ostling, J.,
Svenblad, B., & Weichart, D. (1993). How do non-differentiating bacteria adapt to starvation? Antonie
Van Leeuwenhoek 63, 333-341.
Koga, T. & Takumi, K. (1995). Nutrient starvation induces cross protection against heat, osmotic, or
H2O2 challenge in Vibrio parahaemolyticus. Microbiol. Immunol. 39, 213-215.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004a). Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004b). Role of
catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004c). Role of
catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
Kong, I. S., Bates, T. C., Hulsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004d). Role of
catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50,
133-142.
LaRossa, R. A. & Van Dyk, T. K. (1991). Physiological roles of the DnaK and GroE stress proteins:
catalysts of protein folding or macromolecular sponges? Mol. Microbiol. 5, 529-534.
Leenanon, B. & Drake, M. A. (2001). Acid stress, starvation, and cold stress affect poststress behavior of
Escherichia coli O157:H7 and nonpathogenic Escherichia coli. J. Food Prot. 64, 970-974.
Leverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P., & Jan, G. (2003). Susceptibility and
adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis.
Appl. Environ. Microbiol. 69, 3809-3818.
Lin, C., Yu, R. C., & Chou, C. C. (2004a). Susceptibility of Vibrio parahaemolyticus to various
environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92, 207-215.
Lin, C., Yu, R. C., & Chou, C. C. (2004c). Susceptibility of Vibrio parahaemolyticus to various
environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92, 207-215.
Lin, C., Yu, R. C., & Chou, C. C. (2004b). Susceptibility of Vibrio parahaemolyticus to various
environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92, 207-215.
Linder, K. & Oliver, J. D. (1989a). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Linder, K. & Oliver, J. D. (1989b). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Linder, K. & Oliver, J. D. (1989d). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Linder, K. & Oliver, J. D. (1989c). Membrane fatty acid and virulence changes in the viable but
nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837-2842.
Lleo, M. M., Bonato, B., Tafi, M. C., Signoretto, C., Boaretti, M., & Canepari, P. (2001). Resuscitation
rate in different enterococcal species in the viable but non-culturable state. J. Appl. Microbiol. 91,
1095-1102.
McCarter, L. & Silverman, M. (1989). Iron regulation of swarmer cell differentiation of Vibrio
parahaemolyticus. J. Bacteriol. 171, 731-736.
McGovern, V. P. & Oliver, J. D. (1995). Induction of cold-responsive proteins in Vibrio vulnificus. J.
Bacteriol. 177, 4131-4133.
Miller, A. J., Bayles, D. O., & Eblen, B. S. (2000). Cold shock induction of thermal sensitivity in Listeria
monocytogenes. Appl. Environ. Microbiol. 66, 4345-4350.
Mizunoe, Y., Wai, S. N., Ishikawa, T., Takade, A., & Yoshida, S. (2000c). Resuscitation of viable but
nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS
Microbiol. Lett. 186, 115-120.
Mizunoe, Y., Wai, S. N., Ishikawa, T., Takade, A., & Yoshida, S. (2000a). Resuscitation of viable but
nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS
Microbiol. Lett. 186, 115-120.
Mizunoe, Y., Wai, S. N., Ishikawa, T., Takade, A., & Yoshida, S. (2000b). Resuscitation of viable but
nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS
Microbiol. Lett. 186, 115-120.
Nilsson, L., Oliver, J. D., & Kjelleberg, S. (1991). Resuscitation of Vibrio vulnificus from the viable but
nonculturable state. J. Bacteriol. 173, 5054-5059.
Noh, D. O. & Gilliland, S. E. (1993b). Influence of bile on cellular integrity and beta-galactosidase
activity of Lactobacillus acidophilus. J. Dairy Sci. 76, 1253-1259.
Noh, D. O. & Gilliland, S. E. (1993a). Influence of bile on cellular integrity and beta-galactosidase
activity of Lactobacillus acidophilus. J. Dairy Sci. 76, 1253-1259.
Novitsky, J. A. & Morita, R. Y. (1976). Morphological characterization of small cells resulting from
nutrient starvation of a psychrophilic marine vibrio. Appl. Environ. Microbiol. 32, 617-622.
Nystrom, T., Albertson, N., & Kjelleberg, S. (1988). Synthesis of membrane and periplasmic proteins
during starvation of a marine Vibrio sp. J. Gen. Microbiol. 134, 1645-1651.
Nystrom, T., Flardh, K., & Kjelleberg, S. (1990). Responses to multiple-nutrient starvation in marine
Vibrio sp. strain CCUG 15956. J. Bacteriol. 172, 7085-7097.
Nystrom, T., Olsson, R. M., & Kjelleberg, S. (1992b). Survival, stress resistance, and alterations in
protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients.
Appl. Environ. Microbiol. 58, 55-65.
Nystrom, T., Olsson, R. M., & Kjelleberg, S. (1992a). Survival, stress resistance, and alterations in
protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients.
Appl. Environ. Microbiol. 58, 55-65.
Okuda, J., Ishibashi, M., Abbott, S. L., Janda, J. M., & Nishibuchi, M. (1997). Analysis of the
thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive
strains of Vibrio parahaemolyticus isolated on the West Coast of the United States. J. Clin. Microbiol. 35,
1965-1971.
Oliver, J. D. & Bockian, R. (1995a). In vivo resuscitation, and virulence towards mice, of viable but
nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 2620-2623.
Oliver, J. D. & Bockian, R. (1995b). In vivo resuscitation, and virulence towards mice, of viable but
nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 2620-2623.
Oliver, J. D. & Bockian, R. (1995c). In vivo resuscitation, and virulence towards mice, of viable but
nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 2620-2623.
Oliver, J. D., Nilsson, L., & Kjelleberg, S. (1991b). Formation of nonculturable Vibrio vulnificus cells
and its relationship to the starvation state. Appl. Environ. Microbiol. 57, 2640-2644.
Oliver, J. D., Nilsson, L., & Kjelleberg, S. (1991a). Formation of nonculturable Vibrio vulnificus cells
and its relationship to the starvation state. Appl. Environ. Microbiol. 57, 2640-2644.
Pan, T.-M., Wang, T. K., Lee, C.-L., Chien, S.-W., & Horng, C.-B. (1997). Food-borne disease outbreaks
due to bacteria in Taiwan, 1986 to 1995. Journal of Clinical Microbiology 35, 1260-1262.
Popham,D.L. and Young,K.D. (2003) Role of penicillin-binding proteins in bacterial cell morphogenesis.
Curr. Opin. Microbiol. 6, 594-599.
Provenzano, D. & Klose, K. E. (2000). Altered expression of the ToxR-regulated porins OmpU and
OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization.
Proc. Natl. Acad. Sci. U. S. A 97, 10220-10224.
Rahman, I., Shahamat, M., Chowdhury, M. A., & Colwell, R. R. (1996b). Potential virulence of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 62, 115-120.
Rahman, I., Shahamat, M., Chowdhury, M. A., & Colwell, R. R. (1996a). Potential virulence of viable
but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 62, 115-120.
Reeve, C. A., Amy, P. S., & Matin, A. (1984). Role of protein synthesis in the survival of carbon-starved
Escherichia coli K-12. J. Bacteriol. 160, 1041-1046.
Roth, W. G., Leckie, M. P., & Dietzler, D. N. (1988). Restoration of colony-forming activity in
osmotically stressed Escherichia coli by betaine. Appl. Environ. Microbiol. 54, 3142-3146.
Sakazaki, R., Iwanami, S., & Tamura, K. (1968). Studies on the enteropathogenic, facultatively halophilic
bacterium, Vibrio parahaemolyticus. II. Serological characteristics. Jpn. J. Med. Sci. Biol. 21, 313-324.
Shin, M. G., Shin, J. H., Suh, S. P., Ryang, D. W., & Bae, K. S. (1997). Cellular fatty acid profiles of
ninety-five strains of Vibrio vulnificus isolated from clinical specimens in Korea. J. Gen. Appl. Microbiol.
43, 317-324.
Signoretto, C., Lleo, M. M., Tafi, M. C., & Canepari, P. (2000). Cell wall chemical composition of
Enterococcus faecalis in the viable but nonculturable state. Appl. Environ. Microbiol. 66, 1953-1959.
Su, H. P., Chiu, S. I., Tsai, J. L., Lee, C. L., & Pan, T. M. (2005). Bacterial food-borne illness outbreaks
in northern Taiwan, 1995-2001. J. Infect. Chemother. 11, 146-151.
Svitil, A. L., Cashel, M., & Zyskind, J. W. (1993). Guanosine tetraphosphate inhibits protein synthesis in
vivo. A possible protective mechanism for starvation stress in Escherichia coli. J. Biol. Chem. 268,
2307-2311.
Wai, S. N., Mizunoe, Y., Takade, A., & Yoshida, S. (2000). A comparison of solid and liquid media for
resuscitation of starvation- and low-temperature-induced nonculturable cells of Aeromonas hydrophila.
Arch. Microbiol. 173, 307-310.
Wang, N., Yamanaka, K., & Inouye, M. (1999). CspI, the ninth member of the CspA family of
Escherichia coli, is induced upon cold shock. J. Bacteriol. 181, 1603-1609.
Weichart, D. & Kjelleberg, S. (1996). Stress resistance and recovery potential of culturable and viable but
nonculturable cells of Vibrio vulnificus. Microbiology 142 ( Pt 4), 845-853.
Weichart, D., Oliver, J. D., & Kjelleberg, S. (1992). Low temperature induced non-culturability and
killing of Vibrio vulnificus. FEMS Microbiol. Lett. 79, 205-210.
Whitesides, M. D. & Oliver, J. D. (1997). Resuscitation of Vibrio vulnificus from the Viable but Nonculturable State. Appl. Environ. Microbiol. 63, 1002-1005.
Wong, H. C., Liu, S. H., Ku, L. W., Lee, I. Y., Wang, T. K., Lee, Y. S., Lee, C. L., Kuo, L. P., & Shih, D.
Y. (2000). Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness
outbreaks during 1992 through 1995 in Taiwan. J. Food Prot. 63, 900-906.
Wong, H. C., Lu, K. T., Pan, T. M., Lee, C. L., & Shih, D. Y. (1996). Subspecies typing of Vibrio
parahaemolyticus by pulsed-field gel electrophoresis. J. Clin. Microbiol. 34, 1535-1539.
Wong, H. C., Peng, P. Y., Han, J. M., Chang, C. Y., & Lan, S. L. (1998b). Effect of mild acid treatment
on the survival, enteropathogenicity, and protein production in vibrio parahaemolyticus. Infect. Immun.
66, 3066-3071.
Wong, H. C., Peng, P. Y., Han, J. M., Chang, C. Y., & Lan, S. L. (1998a). Effect of mild acid treatment
on the survival, enteropathogenicity, and protein production in vibrio parahaemolyticus. Infect. Immun.
66, 3066-3071.
Wong, H. C., Peng, P. Y., Lan, S. L., Chen, Y. C., Lu, K. H., Shen, C. T., & Lan, S. F. (2002). Effects of
heat shock on the thermotolerance, protein composition, and toxin production of Vibrio parahaemolyticus.
J. Food Prot. 65, 499-507.
Wong, H. C., Shen, C. T., Chang, C. N., Lee, Y. S., & Oliver, J. D. (2004a). Biochemical and virulence
characterization of viable but nonculturable cells of Vibrio parahaemolyticus. J. Food Prot. 67,
2430-2435.
Wong, H. C. & Wang, P. (2004). Induction of viable but nonculturable state in Vibrio parahaemolyticus
and its susceptibility to environmental stresses. J. Appl. Microbiol. 96, 359-366.
Wong, H. C., Wang, P., Chen, S. Y., & Chiu, S. W. (2004b). Resuscitation of viable but non-culturable
Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol. Lett. 233, 269-275.
Wood, J. M. (1999). Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol.
Biol. Rev. 63, 230-262.
Yamamori, T., Ito, K., Nakamura, Y., & Yura, T. (1978). Transient regulation of protein synthesis in
Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134, 1133-1140.
Yamamori, T. & Yura, T. (1980). Temperature-induced synthesis of specific proteins in Escherichia coli:
evidence for transcriptional control. J. Bacteriol. 142, 843-851.