(3.238.186.43) 您好!臺灣時間:2021/03/05 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃巽婷
研究生(外文):Hsun-Ting Huang
論文名稱:以適性化網路評量為基礎的輔助學習系統之設計與建置
論文名稱(外文):The Design and Implement of an Assisted Learning System Based on Adaptive Web-Based Assessment
指導教授:曾修宜曾修宜引用關係
指導教授(外文):Shou-Yi Tseng
學位類別:碩士
校院名稱:東吳大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:60
中文關鍵詞:試題反應理論電腦化適性測驗能力估計值學習回饋試題困難度
外文關鍵詞:IRTCATInitial ability estimateLearning feedbackDifficulty level
相關次數:
  • 被引用被引用:2
  • 點閱點閱:305
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出以試題反應理論(Item Response Theory, IRT)根據電腦化適性測驗(Computerized Adaptive Testing, CAT)為基礎的輔助學習系統(Assisted Learning System, ALS)建置,協助學習者在最有效的時間內了解個人的學習能力與弱點,藉由適性化網路評量得知個人能力估計值(Initial Ability Estimate),在施測後給予學習者個人化的教材及學習紀錄上的回饋。我們除了輔助學習者學習回饋(Learning Feedback)外,更協助授課者根據學習者程度調整試題困難度(Difficulty Level)建議和給予合適的網頁資源、投影片等補充教材資源,並且作為學習者評分的依據。本研究最大的目的仍是希望讓學習者能在最有效的時間內完成測驗、了解個人能力程度以及給予個人合適的教材回饋等三大方面進行學習歷程。
This study designs and implements an Assisted Learning System (ALS). Our object is to understand the ability and weakness in the individual's learning by the adaptive web-based assessment. The system provides resources for learning theory about Item Response Theory (IRT) and Computerized Adaptive Testing (CAT), and it can adjust to the initial ability estimate for students to create tailor-made test. Moreover, the system provides a personalize materials for learners and learning records on the learning feedback. Also, the system can help teachers to adjust the difficulty level of exams, and to give the appropriate advice and teaching resources such as web resources or power point slides. The main purpose is to let the learners in the most effective time to complete tests and to understand the level of individual ability and to give individuals the right feedback and the three aspects of teaching learning process as well.
誌謝 i
論文摘要 ii
Abstract iii
目 錄 iv
圖目錄 vi
表目錄 viii
1.緒論1
1.1研究背景1
1.2研究動機3
1.3研究目的4
2.文獻探討5
2.1數位學習與網路評量5
2.2電腦化適性測驗CAT6
2.3試題反應理論IRT8
2.4教學回饋11
3.研究方法13
3.1系統介面13
3.2適性化網路評量方式15
3.2.1題庫建立(Item Bank)15
3.2.2題目選擇(Item Selection)16
3.2.3能力估計(Ability Estimation)16
3.2.4停止條件(Stopping Rule)16
3.2.5適性化網路評量範例17
3.3系統架構21
3.4實驗設計24
4.研究結果28
4.1實驗背景28
4.2系統平台說明及介面展示30
4.2.1試卷建立與試題編排系統30
4.2.2教師教學回饋系統35
4.2.3學生評量與教材回饋系統37
4.3實驗結果41
4.4討論45
5.結論與未來展望47
參考文獻48
王寶墉,現代測驗理論,心理出版社,台北,1995年。
(美)史金納(B. F. Skinner)著,桃源二村,蘇元良譯,張老師文化,台北,1992年。
余民寧,試題反應理論IRT及其應用,心理出版社,台北,2009年,9月。
何榮桂,「量身訂製的測驗-適性測驗」,測驗與輔導,157期,pp.3289-3293,1999。
何榮桂,「遠距測驗-Dear Cat的設計與實施」,中華民國物理教育學會:物理教育,1卷1期,pp. 51-62,1997。
林彥廷,「數位學習環境下以決策樹為基礎之線上題庫難易度自動分級」,南台科技大學資訊工程系研究所,碩士論文,2005。
姚家豪,「題庫資源標準化與具回饋機制之評量測驗系統設計與實作」,國立中山大學資訊工程學系研究所,碩士論文,2004。
洪碧霞、吳鐵雄,「簡介電腦化適性測驗的發展及其實施要素並兼論我國大專聯考電腦適性化的可行性」,中國測驗學會:測驗年刊,36期,pp. 75-94,1989。
陳景蔚,「無所不在的運算環境與進化中的行動學習」,國立嘉義大學通識學報,4期,pp. 17-45,2006。
曾修宜、黃巽婷,「以適性化網路評量為基礎的輔助學習系統之設計與建置」,第十四屆全球華人計算機教育應用大會(GCCCE2010),新加坡,2010年,6月。
黃本杲,「班級適性化測驗系統之建置-以英語學習護照為例」,國立中央大學網路學習科技研究所,碩士論文,2004。
馮琪惠,「以教材結構為基礎之自動化試題分類測驗系統」,國立中山大學資訊工程學系研究所,碩士論文,2007。
黃河銓、謝福明,「以情境感知建構適性化學習風格之行動學習系統」,TANET2007台灣網際網路研討會,台北,2007年,10月。
Barker, P., ”On being an online tutor”, Innovation in Education and Teaching International, 39(1), pp.3-13, 2002.
Birnbaum, A., Some latent trait models and their use in inferring an examinee’s ability, In F.M. Lord, & M. R. Novick, Statistical theories of mental test scores, Reading MA : Addison-Wesley, 1968.
Brusilovsky, P., ”Adaptive and Intelligent Technologies for Web-based Education”, In C. Rollinger and C. Peylo(Eds), Special Issue on Intelligent Systems and Teleteaching. Kunstliche Intelligenz, 4, pp.19-25, 1999.
Chen, C. M., & Chen, M. C., ”Mobile formative assessment tool based on data mining techniques for supporting web-based learning”, Computers & Education, 52(1), pp.256-273, 2009.
Chen, C. M., Lee, H. M., & Chen, Y. H., ”Personalized e-learning system using Item Response Theory ”, Computers & Education, 44(3), pp.237-255, 2005.
Chen, G. D., Chang, C. K., & Wang, C. Y. ”Ubiquitous learning website: Scaffold learners by mobile devices with information-aware techniques”, Computers & Education, 50(1), pp.77-90, 2008.
Cheng, S. C., & Lin, Y. T., ” Location Aware Mobile Learning with Intelligent Download Suggestions”, Proceedings of 5th International Conference on Web-bases Learning(ICWL2006), 2006.
Embretson, S. E., & Reise, S. P., Item Response Theory for Psychologist, London: Lawrence Erlbaum Associates, Publishers, 2000.
Hambleton, R. K., & Swaminathan, H., Item response theory : Principles and applications, Boston: Kluwer Nijhoff, 1985.
Huang, Y. M., Kuo, Y. H., Lin, Y. T., & Cheng, S. C., ”Toward interactive mobile synchronous learning environment with context-awareness service”, Computers & Education, 51(3), pp.1205-1226, 2008.
Huang, Y. M., Lin, Y. T., & Cheng, S. C., ”An adaptive testing system for supporting versatile educational assessment”, Computers & Education, 52(1), pp.53-67, 2009.
Hulin, C. L., Drasgow, F., & Parsons, C. K., Item response theroy: Application to psychological measurement, Homewood, IL: Dow Jones-Irwin, 1983.
Kingsbury, G. G., & Zara, A. R., ”Procedures for selecting items for computerized adaptive tests”, Applied Measurement in Education, 2, pp.359-375, 1989.
Kitamura, M., ”Using Ubiquitous Network to Create New Services Based on the Commercial and Public Infrastructure”, Nomura Research Institute Papers, (54), September 1, 2002.
Lord, F. M., ”A theory of test scores”, Psychometric Monograph, (7), 1952.
Lord, F. M., Applications of item response theory to practional testing problems, Hillsdale, NJ: Lawrence Erlbaum Associates, 1980.
Motiwalla, L. F., ” Mobile learning: A framework and evaluation”, Computers & Education, 49(3), pp.581-596, 2007.
Murakami, T., ”Establishing the Ubiquitous Network Environment in Japan”, Nomura Research Institute Papers, (66), July 1,2003.
Quinlan, J. R., ” Improved use of continuous attributes in C4.5”, Journal of Artificial Intelligence Research, 4, pp.77-90. 1996.
Rasch, G., Probabilistic models for some Intelligence and attainment tests, Chicago: University of Chicago Press, 1960.
Rokach, L. & Mainon, O., ” Top-down Induction of Decision Trees Classifiers-A Survey”, Systems, Man, and Cybernetics, Part C, IEEE Transactions on, 35(4), pp.476-487, Nov, 2005.
Triantafillou, E., Georgiadou, E., & Economides, A. A., ”The design and evaluation of a computerized adaptive test on mobile devices”, Computers & Education, 50(4), pp.1319-1330, 2008.
Weiss, D. J., ”Proceeding of the 1979 Computerized Adaptive Testing Conference”, Minneapolis: University of Minnesota, 1980.
Wright, B. D., & Stone, M. H., Best test design: Rasch measurement, Chicago, IL: MESA Press, 1979.
Zhou, Z. H., & Jiang, Y., ”NEC4.5: Neural Ensemble Based C4.5 ”, IEEE Transactions on Knowledge and Data Engineering, 16(6), pp.770-773, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔