(3.238.186.43) 您好!臺灣時間:2021/02/28 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃文衍
研究生(外文):Wen-Yen Huang
論文名稱:懸浮性TiO2漿料之製備與性質研究
論文名稱(外文):Preparation and characterization of the suspension TiO2 slurry
指導教授:蔡明雄蔡明雄引用關係
指導教授(外文):Ming-Shyong Tsai
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:二氧化鈦纖維狀過氧化氫可見光
外文關鍵詞:TiO2fiberH2O2visible
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,主要是探討HCl濃度、合成溫度、H2O2濃度等參數,探討對TiO2漿料的性質變化,並以分解一定量之1mg/L甲基橙染料來量測其光觸媒效率。隨著HCl的濃度增加,TiO2的結晶相會從銳鈦礦相,逐漸的長出金紅石相,因而擁有混晶相的性質,且光觸媒效率也隨之增加。本實驗HCl濃度之最佳值為1.2M做。在60℃合成溫度時,其形態為棒狀與球狀混合,並為纖維狀的Rutile相與顆粒形態的Anatase相的混合晶相,其擁有相對於純纖維狀與純顆粒形態較為快速的光觸媒效率,所得粉末可在約50分鐘內便能將1mg/L的甲基橙分解完全,本實驗的最佳合成溫度為60℃。添加H2O2可使1mg/L甲基澄的分解時間縮短至4~5分鐘。本實驗的H2O2理想濃度約在10mM至1M之間,另外添加H2O2溶液也可使TiO2漿料在可見光下也能有光觸媒反應,約2小時便能將1mg/L的甲基橙分解完畢。
The effect of the HCl concentration and the reaction temperature on the formation of TiO2 powder was investigated. The H2O2 addition to improve the photo catalysis properties (which was measured by the decomposition of methyl orange dye) of TiO2 slurry was also discussed in this article. The rutile phase in the formation powder was increased to formed the mixing phase TiO2 by increasing the HCl concentration. The mixing phase powder leads to improve the photocatalytic efficiency of TiO2 powder. According to the experimental results, the best HCl concentration is about 1.2M HCl. The product shows the rod-like with spherical powder mixture as the formation temperature at 60℃. The rod-like particles are rutile phase TiO2 and the spherical particles are anatase TiO2. The photocatalyst efficiency of this mixture is better than that of pure rutile or pure anatase powder. The 1mg/L methyl orange can be decomposed completely after exposing in UV light for 50 min. The best formation temperature is at 60℃. In addition, the photocatalysis can be improved by adding H2O2 to TiO2 slurry. The better concentration of H2O2 is in the range 10mM ~ 1M. The 1mg/L methyl organic was completely decomposed during 4~5 min by using TiO2 with H2O2. Adding H2O2 can also enhance photocatalysis property of TiO2 slurry in the visible light. The 1mg/L methyl organ could be completely decomposed during 2hr as exposing in visible light.
中文摘要
英文摘要
致謝
目錄
表目錄
圖目錄
第一章 緒論
1.1 前言
1.2 奈米TiO2之應用
1.3 文獻回顧
1.4 研究目的
第二章 理論部份
2.1 奈米半導體
2.2 TiO2的簡介
2.3 TiO2的光觸媒原理
2.4 TiO2的親水性原理
2.5 奈米級TiO2的合成
2.6 溶膠凝膠法的簡介
2.7 提升TiO2光觸媒效率方法
第三章 實驗部分
3.1 藥品
3.2 儀器分析方法
3.2.1 秤重測量
3.2.2 酸鹼值測定
3.2.3 具攪拌功能之加熱板
3.2.4 紫外光/可見光光譜儀(UV-visible Spectrophotometer)
3.2.5 X光繞射分析儀(XRD)
3.2.6 穿透式電子顯微鏡(transmission electron microscope, TEM)
3.2.7 光觸媒測定反應箱
3.3 實驗流程
3.3.1製備TiO2光觸媒
3.3.2量測並探討TiO2光觸媒效率
第四章 結果與討論
4.1 不同HCl濃度對TiO2漿料之探討
4.1.1 不同HCl濃度對TiO2漿料的光觸媒效率分析
4.1.2 不同HCl濃度的TiO2漿料之TEM分析
4.1.3 不同HCl濃度的TiO2漿料之XRD分析
4.2 不同合成溫度的TiO2漿料之探討
4.2.1 不同合成溫度對TiO2漿料的光觸媒分析
4.2.2 不同合成溫度對TiO2漿料的TEM分析
4.2.3 不同合成溫度TiO2漿料的晶相對其光觸媒效率之影響
4.2.4 合成溫度60℃,不同酸濃度TiO2漿料之光觸媒分析
4.3 不同合成條件對TiO2漿料的結晶相與型態之整理
4.4 不同H2O2濃度對TiO2漿料之探討
4.4.1 不同H2O2濃度對TiO2漿料之光觸媒效率分析
4.4.2 不同pH值對TiO2漿料的光觸媒效率之分析
4.4.3 可見光照下對TiO2漿料之光觸媒效率分析
4.5 自製TiO2漿料與市售光觸媒P25之效率比較
4.6 TiO2漿料之應用
第五章 結論
參考文獻
[1] 林貞岑,“光觸媒、臭氧 誰才是病菌剋星?”,康健雜誌 (2003.6.1) 55期
[2] 取自http://www.ctitw.com.tw/picture/CNF%20%20FOR%20web.pdf
[3] 高濂 鄭珊 張青紅 “奈米光觸媒” 五南圖書出版股份有限公司 2004.4初版
[4] 取自http://www.ctci.org.tw/public/Attachment/562714282071.doc
[5] 取自http://www.ctci.org.tw/public/Attachment/562714495371.doc
[6] M Grätzel, “Photoelectrochemical cells”, Nature 414, (15 November 2001) 338-344.
[7] C. Morterra, “An infrared spectroscopic study of anatase properties”, J. Chem. Soc. Faraday Trans.I 84, (1988)1617-1637.
[8] M.C. Thunauer, D.C. Hurum, A.G. Agrios, K.A. Gray, and T. Rajh, “Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR”, J. Phys. Chem. B 107 (2003) 4545.
[9] M.-C. Yan, F. Chen, J.-L. Zhang and M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B 109 (2005) 8673.
[10] M. S. Ghamsari, S. Mahshid, M. Askari, N. Afsharc, and S. Lahuti, “Mixed-phase TiO2 nanoparticles preparation using sol–gel method”, Journal of Alloys and Compounds 478 (2009) 586–589.
[11] D. Xia, Z. Wang, G. Chen, T. Yang, and Y. Chen, “The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature”, Materials Chemistry and Physics 111 (2008) 313–316.
[12] J. Zhu, K. Yang, J. Zhu, S. Huang, X. Zhu, and G. Ma, “Sonochemical synthesis and microstructure investigation of rod-like nanocrystalline rutile titania”, Materials Letters 57 (2003) 4639– 4642
[13] C.Y. Liu, S. Zhang, Y. Liu, Z.Y. Zhang, L. and J. Mao, “Room temperature synthesis of nearly monodisperse rodlike rutile TiO2 nanocrystals”, Materials Letters 63 (2009) 127–129.
[14] S. H. Ehrman, and S. Kim, “Photocatalytic activity of a surface-modified anatase and rutile titania nanoparticle mixture”, Journal of Colloid and Interface Science 338 (2009) 304–307.
[15] Y. Nosaka, T. Hirakawa, and K. Yawata, “Photocatalytic reactivity for O2- and OH- radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition”, Applied Catalysis A: General 325 (2007) 105–111.
[16] W. Chu, W.K. Choy, and T.Y. So, “The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline”, Journal of Hazardous Materials 141 (2007) 86–91.
[17] R. S. Juang, C. H. Chiou, and C. Y. Wu, “Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions”, Separation and Purification Technology 62 (2008) 559–564.
[18] 取自http://140.120.11.121/~ysuen/device_phys/handout/chap1.pdf
[19] 取自 http://www.nanoedu.ndhu.edu.tw/labtext/94_Lo_DSSC.pdf
[20] 林亞南,“製程參數對TiO2-SiO2複合薄膜及複合粉末性質之研究”,大同大學材料工程系碩士論文,2004.6.
[21] 葉育瑋,“以氧化鈦奈米管製備混相二氧化鈦光觸媒”,國立臺灣大學化學系,2006.6.
[22] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Reports 48(2003) 53.
[23] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids:Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc 109 (1987) 3639.
[24] Phase Diagrams for Ceramist Figure 4150~4999, The American Ceramic Society, Inc.76(1975)
[25] A.L. Linsebigler, G. Lu and J.T. Yate. Jr., “Photocatalysis on TiO2 surface:principles, mechanism, and selected results.”, Chem. Rev. 95 (1995) 735.
[26] 取自http://www.photocatalyst.co.jp/
[27] Y. Takata, S. Hidaka, M. Masuda and T. Ito, “Pool boiling on a superhydrophilic surface”, Int. J. Energy Res 27 (2003)111~119
[28] 黃建豪,“脈衝直流濺鍍法製作摻雜氮之二氧化鈦”,國立中央大學光電科學碩士論文,2007.7
[29] 楊子寬,“利用溶膠凝膠法製備TiO2-Al2O3粉末及對TiO2光催化效果影響之研究”,國立成功大學資訊工程學系博士論文,2006.8
[30] 林正豐,“奈米二氧化鈦之製備及活性測定”,國立臺灣大學化學工程學系碩士論文,`2001.6
[31] C.Sanchez, J. Livage, M. Henry and F. Babonneau, “Chemical modification of alkoxide precursors”, J. Non-Crystal. Solids,100(1988)65-76.
[32] 取自http://diogenes.iwt.uni-bremen.de/wt/wb/solgel/verfahren_en.php
[33] B. Bayarri, J. Gimenez, D. Curco, and S. Esplugas, “Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: kinetics, actinometries and models”, Catal. Today101 (2005) 227–236.
[34] K.H. Wang, Y.H. Hsieh, and L.J. Chen, “The heterogeneous photocatalytic degradation,intermediates and mineralization for the aqueous solution of cresols andnitrophenols”, J. Hazard. Mater. 59 (1998) 251–260.
[35] Er. Kusvuran, A. Samil, O.M. Atanur, and O. Erbatur, “Photocatalytic degradation kinetics of di- and tri-substituted phenolic compound in aqueous solution by TiO2/UV”, Appl. Catal. B: Environ. 58 (2005) 211–216.
[36] A.V. Petukhov, “Effect of molecular mobility on kinetics of an electrochemical Langmuir–Hinshelwood reaction”, Chem. Phys. Lett. 277 (1997) 539–544
[37] R.A. Spurr and H. Myers, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer”, Anal. Chem. 29 (1957) 760
[38] T. Ohno, T. Tsubota, Y. Nakamura, and K. Sayama, “Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light”, Appl. Catal. A 288 (2005) 74.
[39] S. Somekawa, Y. Kusumoto, M. Ikeda, B. Ahmmad, and Y. Horie, “Fabrication of N-doped TiO2 thin films by laser ablation method: mechanism of N-doping and evaluation of the thin films”, Catal. Commun. 9 (2008) 437.
[40] J.H. Xu, W.L. Dai, J.X. Li, Y. Cao, H.X. Li, H.Y. He, and K.N. Fan, “Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation” Catal. Commun. 9 (2008) 146.
[41] L. Lin, R.Y. Zheng, J.L. Xie, Y.X. Zhu, and Y.C. Xie, “Synthesis and characterization of phosphor and nitrogen co-doped titania”, Appl. Catal. B 76 (2007) 196
[42] J.C. Yu, L.Z. Zhang, Z. Zheng, and J.C. Zhao, “Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity”, Chem. Mater. 15 (2003) 2280.
[43] Z. Yi, W. Wei, S. Lee, and J.H. Gao, “Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation”, Catal. Commun. 8 (2007) 906.
[44] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, “Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2”, Catal. Today 84 (2003) 191.
[45] N. Venkatachalam, M. Palanichamy, B. Arabindoo, and V. Murugesan, “Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralisation of bisphenol-A” Catal. Commun. 8 (2007) 1088
[46] M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev. 95 (1995) 69.
[47] T. Hirakawa, and Y. Nosaka, “Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions”, Langmuir 18 (2002) 3247.
[48] Y. Nosaka, S. Komori, K. Yawata, T. Hirakawa, A.Y. Nosaka, “Photocatalytic OH radical formation in TiO2 aqueous suspension studied by several detection methods”, Phys. Chem. Chem. Phys. 5 (2003) 4731.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔