(3.238.186.43) 您好!臺灣時間:2021/03/01 09:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂益元
研究生(外文):Yi Yuan,Lu
論文名稱:應用於無線ECG訊號傳輸系統之電極天線設計
論文名稱(外文):Design of electrode antenna for wireless ECG signal transmission system
指導教授:楊弘吉
指導教授(外文):Hu Gi,Yang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:生物醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:120
中文關鍵詞:無線電極感測器ZIGBEE無線傳輸系統醫療通訊服務頻段
外文關鍵詞:ECGsingle-electrodeZigBeewireless transmission physiological signal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
近年來,遠端遙測生理系統廣泛運用在病人身上監測生理資訊,例如,心電圖、呼吸、溫度等等。本研究創新設計兼具天線功能之電極感測器之ECG量測系統。電極所擷取的生理訊號可以無線方式傳送至終端監測站供醫護人員檢測和分析,此設計不僅可以達到無線方式監測病患外,還改善病患攜帶儀器的不便,增加移動性及其安全性,達到監控病患為目的。本實驗所提議的電極天線感測器優於傳統的三點電極,改善以往需要多貼片量測方式所造成的不便。在天線設計方面符合美國聯邦通訊委員會(Federal Communications Commission;FCC),ISM(工業、科學和醫療)頻段: 2400 ~ 2484.5 MHz。此電極感測器裝載在ZigBee發射器模組上,將所量測到心電圖訊號傳送到終端電腦,由LabVIEW軟體顯示且以時域分析方法找出人生命重要的指標R波,計算R-R間距並計算出心跳數。在室外無障礙物的情況下,量測結果可達50公尺無線傳輸,此系統可以由一般電池驅動,方便可攜。
In recent years, Remote telemetry systems are widely used in physiological monitoring of patient physiological information, such as ECG, respiration, temperature, etc. Hence, the purpose of this study design an wireless function has been combined within a single-electrode bio-signal measurement module to facilitate wireless transmission. To compare with traditional three-point electrode measurement, this wireless module will greatly improve the patient mobility and security. In order to adapt with ZigBee system, the embedded antenna is designed on ISM band (2400 ~ 2484.5 MHz) provided by Federal Communications Commission;FCC Communication Services. The wireless electrode measurement module is applied to transmit ECG signal to the receivers located more than 50 meters away. ECG signals can be displayed with Labview on PC system.
摘要 i
ABSTRACT ii
誌謝 iii
目次 iv
圖目錄 vi
表目錄 vi
第 一 章緒論 ix
1. 1簡介 1
1. 2 背景及文獻探討 2
1.2. 1無線傳輸生理監測技術 2
1.2. 2天線技術與規範 6
1.2. 3人體之電磁波能量特定吸收比率(SAR) 7
1. 3研究動機與目的 8
第 二 章相關理論背景 10
2. 1天線簡介 10
2.1. 1天線的輸入阻抗(Input Impedance)與電壓駐波比(VSWR) 10
2.1. 2返回損失(Return Loss) 13
2.1. 3天線的輻射場型: 14
2.1. 4天線的指向性及增益(Directivity and Gain) 16
2.1. 5電波與天線極化 (Electromagnetic Wave & Antenna Polarization) 17
2.1. 6槽孔天線(Slot Antenna) [25] 19
2.1. 7單極天線(monopole antenna) 20
2. 2心電圖簡介: 22
2.2. 1心臟的傳導系統: 22
2.2. 2心電圖導程介紹: 24
第 三 章電極天線設計與實作流程 29
3. 1概述 29
3. 2共面波導之槽孔天線簡介: 29
3. 3天線結構 32
3.3. 1概述 32
3.3. 2共面波導饋入方式之槽孔天線尺寸設計 32
3.3. 3天線結構參數之特性影響 34
3.3. 4改變G參數對天線特性的影響 34
3.3. 5改變Wf參數對天線特性的影響 35
3.3. 6改變R1參數對天線特性的影響[60] 37
3.3. 7改變L1參數對天線特性的影響[61] 38
3.3. 8改變dW參數對天線特性的影響 39
3.3. 9各參數總結論 40
3. 4 Electrode Antenna 設計說明 42
3. 5硬體架構[63] 46
3.5. 1 ECG電路設計 47
3.5. 2 ZigBee 無線傳輸模組 55
3.5. 3 ECG傳送端 57
3.5. 4 ZIGBEE 接收端 58
3. 6 軟體架構 59
3.6. 1計算R波與R波之間間隔 (Calculate R-R Interval) 60
3. 7 實驗測試 61
3. 8天線製作與實測流程介紹 62
3.8. 1天線製作流程 63
第 四章 實驗結果與討論 65
4. 1 FR4基板天線實測結果 65
4. 2 ECG之波形驗證與傳輸結果 71
4. 3 電極天線在有線及無線傳輸量測心電圖結果 74
4. 4 討論 101
第 五章 未來展望 106
5. 1結論 106
5. 2 未來展望 108
參考文獻 109
[1] Lewis, D. C, “Predicting the future of health care,” The Brown University Digest of Addiction Theory & Application, vol. 18, Iss. 4, pp. 12-16, 1999.
[2] Jaehoon, K., and Rahmat-Samii, Y ‘Implanted Antennas Inside a Human Body: Simulations, Designs, and Characterizations’, IEEE Transactions On Microwave Theory And Techniques, Vol. 52, No. 8, pp. 1934 -1943 August 2004.
[3] Soontornpipit, P., Furse, C.M., and You, C.C. ‘Design of Implantable Microstrip Antenna for Communication with medical implants’, IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, pp. 1944-1951, August 2004.
[4] Dixie, F., “In-home tests make health care easier,” FDA Consumer vol. 28, pp. 25-28 , 1994.
[5] 張恪睿,黃秀園,“ZigBee 定位系統應用於居家健康照護之實驗與設計”, 亞洲大學,資訊與通訊學系,九十八年七月
[6] 林俊良,陳右穎,“研發無線感測網路用於居家健康照護”,國立交通大學,電機與控制工程學系,九十五年六月
[7] 湯朝強,林清壽,“無線遠距居家健康照護系統開發”, 南開科技大學,福祉科技與服務管理所,九十八年六月
[8] Gaddam, A.; Mukhopadhyay, S.C.; Sen Gupta, G.; Guesgen, H.“ Wireless Sensors Networks based monitoring: Review, challenges and implementation issues,” International Conference on Sensing Technology, pp. 533-538 Nov. 30-Dec. 3, 2008, Tainan, Taiwan.
[9] Sung, Y.; Jen C. C.,“ A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies,” IEEE-EMBS International Conference on Engineering in Medicine and Biology Society, pp. 2203- 2206, 2005.
[10] Ying, Z.; Hannan X.,“ Bluetooth-Based Sensor Networks for Remotely Monitoring the Physiological Signals of a Patient,” IEEE Transactions on information technology in biomedical, vol.13, no.6, NOVEMBER, 2009.
[11] Hamza, N.; Touati, F.; Khriji, L.” An optimized embedded architecture for multi-purpose wireless biomedical system using ZigBee Technology,” International Conference on Signals, Circuits and Systems, pp. 1-6, 2008.
[12] Jung, J.Y.; Lee, J.W.” ZigBee Device Access Control and Reliable Data Transmission in ZigBee Based Health Monitoring Syst em,” International Conference on Advanced Communication Technology, pp.795-797, 2008.
[13] F.P., C.D., and R.C., “Using Zigbee to Integrate Medical Devices,” Engineering in Medicine and Biology Society, pp. 6717-6720, 2007.
[14] Li, Y.Z. Wang, L. Wu, X.M. and Y.T. Zhang, “Experimental analysis on radio
transmission and localization of a Zigbee-based wireless healthcare monitoring
platform,” Technology and Applications in Biomedicine, pp.488-490, 2008.
[15] Lande, T.S. and Hjortland, H.A. “Impulse Radio technology for Biomedical
applications,” Biomedical Circuits and Systems Conference, pp.67-70, 2007.
[16] Ferrigno, L. and Pietrosanto, A. “A Bluetooth-based proposal of instrument
wireless interface,” VIMS2002 IEEE International Symposium on Virtual and Intelligent Measurement Systems, pp. 72-76, 2002.
[17] Andreasson, J. Ekstrom, M. Fard, A. J.G. Castano, and T. Johnson, “Remote system for patient monitoring using Bluetooth,” Proceedings of IEEE Sensors, vol. 1, pp. 304-307, 2002.
[18] Yuce, M.R. Ng, S.W.P. Myo, N.L. Lee, C.K.; Khan, J.Y.; Wentai Liu, “A MICS Band Wireless Body Sensor Network,” Wireless Communications and Networking Conference, pp. 2473-2478, 2007.
[19] Cho, N. Roh, T. Bae, J. Yoo, H.J. “A Planar MICS Band Antenna Combined With a Body Channel Communication Electrode for Body Sensor Network,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 10, pp. 2515-2522 , OCTOBER, 2009.
[20] Valdastri, P. Menciassi, A. Arena, A. Caccamo, C. Dario, P. , “An implantable telemetry platform system for in vivo monitoring of physiological parameters,” Information Technology in Biomedicine, IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE ,VOL.8,NO.3, SEPTEMBER, 2004.
[21] Gamini, D.S. Shastry, P.N. “Design and Measurements of Implantable Chip Radiator and External receport for wireless blood pressure monitoring system” Microwave Symposium Digest, MTT '09. IEEE MTT-S International, NO.7-12, 2009.
[22] Yazdandoost, K.Y. “A 2.4 GHz antenna for medical implanted communications”, Microwave Conference, APMC 2009. Asia Pacific, pp. 1775 – 1778, 2009.
[23] FCC Rules and Regulations, "WMTS Band Plan," Part 95, Mar. 2003.
[24] 周駿呈(2003),公眾無線區域網路服務市場發展現況與驅勢,無線通訊,
2003年5月,工業技術研究院產業經濟與資訊服務中心。
[25] John, D. Kraus and Ronald J. Marhefka, “Antennas For All Applications (3rd edition )”,McGraw-Hill Higher Education ,New York, 1988.
[26] Booker, H. G. “Slot aerials and their relation to complementary wire aerials, ” J. IEE (London), part 3A, vol. 93, pp. 620-626, 1946.
[27] THE UNIVERSITY OF ALABAMA AT BIRMINGHAM 心臟剖面圖
[28] Vander, A. Sherman, J. and Luciano, D. “Human Physiology:The Mechanisms of Body Function,” McGraw-Hill Inc., 1998.
[29] Joshi, S.D.“A Low Cost Multichannel Central E.C.G. Monitoring System,” Proceedings RC-IEEE-EMBS & 14th BMESI, pp. 11-12, 1995.
[30] Avbelj, V. Trobec, R. Gersak,B. and Vokac, D. “Multichannel ECG Measurement System,” Tenth IEEE Symposium on Computer-Based Medical Systems, pp. 81-84, 1997.
[31] Franchi, D. Belardinelli, A. Palagi, G. Ripoli, A. and Bedini, R.“New telemedicine approach to the dynamic ECG and other biological signals ambulatory monitoring,” Computers in Cardiology, pp. 213-216, 1998.
[32] Bai, Jing Zhang,Y. Shen, D. Wen, L. Ding,C. Cui, Z. Tian, F. Yu, B. Dai, B. and Zhang, J. “A portable ECG and blood pressure telemonitoring system,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, no. 4, pp. 63-70, 1999.
[33] Webster, J. G. “Medical Instrumentation-Application and Design,” 3rd ed., John Wiley & Sons, Inc., 1998.
[34] DAVITA Company, http://www.davita-shop.co.uk心電圖記錄
[35] 黃豪銘, ”醫用電子學,”高立圖書有限公司,台北縣, 2004.
[36]Wikipedia, http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson1/lead_dia.html ECG導程
[37] WEN, C. P. “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” IEEE Transactions On Microwave Theory And Techniques, Vol. MTT-17, NO. 12, December 1969.
[38] Yang, T. and Davis, W. A. “Planar half-disk antenna structures for ultra-wideband communications,” IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 2058-2511, 2004.
[39] J. Liang, L. Guo, C. C. Chaiu et al., “CPW-fed circular disc monopole antenna or UWB applications,” IEEE International Workshop on Antenna Technology, pp.505-508, 2005.
[40] Suh, S. Y. Stutzman,W. Davis, W. et al., “A novel CPW-fed disc antenna,”IEEE Antennas and Propagation Society International Symposium, vol.3, pp.2919-2922, 2004.
[41] Booker, H. G. "Slot aerials and their relation to complementary wire erials," J. IEE (London), part 3A, vol. 93, pp. 620-626, 1946.
[42] Kruas, J. D. Antennas, McGrall Hill, New York, 1988.
[43] Wong, K.L. “ Compact and Broadband Microstrip Antenna”, John Wiley and sons. Inc., NY, USA, 2001.
[44] Simons, Rainee N. “Coplanar waveguide Circuits Components and Systems”, John Wiley and sons. Inc., NY, USA, 2001.
[45] Chen, W.S. and Wong, K.Lu. “A Coplanar Waveguide-Fed Printed Slot Antenna For Dual-Frequency Operation,” IEEE Antennas and Propagat. Soc.Symp., Vol 2, pp. 140-143, July 2001.
[46] Weller, T. M. Katehi, L. P. B. and G. M. Rebeiz, “Single and double folded slot
antennas on semi-infinite substrate,” IEEE Trans. Antennas Propagat., vol. 43,
pp. 1423-1428, 1995.
[47] Tsai, H. S. and York, R. A. “FDTD analysis of CPW-fed folded-slot and multiple-slot antennas on thin substrate,” IEEE Trans. Antennas Propagat., vol.
44, pp. 217-226, 1996.
[48] Raman, S. Linda, T. M. Katchi, P. B. and Rebeiz, G. M. “A double folded-slot
antenna at 94 GHz ,” IEEE AP-S Int. Symp. Dig., pp. 710-713, 1995.
[49] Vourch, E. Drissi, M. and Citerne, J. “Slotline dipole fed by a coplanar waveguide ,” IEEE MTT-S Int. Symp. Dig., pp. 2208-2211, 1994.
[50] Tsai, H. S. and York, R. A. “Multi-slot 50-antenna for quasi-optical circuits,”
IEEE Microwave Guided Wave Lett., vol. 5, pp. 180-182, 1995.
[51] Garcia, S. S. and Laurin, J. J. “Study of a CPW inductively coupled slot antenna,” IEEE Trans. Antennas Propagat., vol. 47, pp. 58-64, 1999.
[52] Huang, J.F. “A SIMPLE MODEL OF DESIGNING CPW-FED SLOT ANTENNA”, International Conference on Microwave and Millimeter Wave Technology Proceedings, ICMMT 2000, pp.383-386.
[53] Gearhart, S. S. and Rebeiz,G. M. “A Monolithic 250 GHz Schottky-diode receiver,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2504-2511, 1994.
[54] Kormanyos, B. K. Harokopus, W. Katechi, L. P. B. and Rebeiz, G. M. “CPW-fed active slot antenna,” IEEE Trans. Antennas Propagat., vol. 42, pp. 541-545, 1994.
[55] William, J. Nakkeeran, R. “CPW-Fed UWB Slot Antenna with Band Notched Design”, Microwave Conference on APMC 2009, pp.1833 – 1836, 2009.
[56] Moghadasi, M. Danideh, N. Sadeghifakhr, A.R. Reza, A.M. “CPW-fed ultra wideband slot antenna with arc-shaped stub”, Microwaves, Antennas & Propagation, IET ,pp. 681-686, 2009.
[57] William, J. Nakkeeran, R. “A New Compact CPW Fed Slot Antenna for UWB Applications”, Microwaves, Antennas & Propagation, IET.
[58] Laheurte, J. M. Katehi, L. P. B. and Rebeiz, G. M. “CPW-fed slot antenna on multilayer dielectric substrate,” IEEE Trans. Antennas Propagat., vol. 44, pp. 1102-1111, 1996.
[59] Liu, H.C. Homg, T.S. and Alexopoulos, G. “Radiation of Printed Antennas with a Coplanar Waveguide Feed,” IEEE Transactions On Antennas And Propagation, vol. 43, no. 10, October 1995.
[60] Schantz, H.G. “ Planar Elliptical Element Ultra-Wideband Dipole Antennas,” In:IEEE APS/URSI Conference, 2002.
[61] Evangelos, S. Angelopoulos, A. Z. Anastopoulos, D. Kaklamani, I. “Circular and Elliptical CPW-Fed Slot and Microstrip-Fed Antennas for Ultrawideband Applications”, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006.
[62] Webster J. G. ,” Medical Instrumentation: Application and Design ,3th Edition”, Wiley, August 11, 1997.
[63] 盧明智, 黃敏祥, “OP Amp 應用+實驗模擬,” 全華科技圖書股份有限公司,
台北市, 2004.
[64] AD620, LowCost,Low Power Instrumentation Amplifier, Analog Devices, AD620 datasheet.
[65] CC2430, A True System-on-Chip solution for 2.4 GHz IEEE 802.15.4/ZigBee,
Texas Instruments, CC2430 datasheet, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔