(3.239.33.139) 您好!臺灣時間:2021/03/08 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡進成
研究生(外文):Jin-Cheng Tsai
論文名稱:以離子束濺鍍法製作非晶矽薄膜之研究
論文名稱(外文):Study of Amorphous Silicon Film Using Ion Beam Sputtering
指導教授:吳文端
指導教授(外文):Wen-Tuan Wu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:82
中文關鍵詞:非晶矽
外文關鍵詞:amorphous silicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於能源危機及地球暖化的問題,使的綠色能源越來越受到重視,薄膜式太陽電池的研究逐漸引起各國許多專家學者的注意。目前最普遍製備太陽能電池是由電漿輔助化學氣相沉積法(plasma-enhance chemical vapor deposition, PECVD)所製作出的非晶矽薄膜太陽電池,非晶矽薄膜的特性也決定薄膜太陽能電池的轉換效率,由於PECVD製備成本高且使用有毒、易燃氣體矽烷(silane, SiH4),然而以離子束濺鍍系統來製作可改善這些缺點。由於目前氫化非晶矽薄膜比非晶矽薄膜的電性更佳、缺陷密度小,而受到重視。因此本研究目的是使用離子束濺鍍系統製作氫化非晶矽薄膜,藉由低鍍率沉積可減少缺陷密度、準確地控制薄膜成長來探討此薄膜特性。利用調變不同製程溫度、氫氣通量,製作出含氫非晶矽薄膜(a-Si:H)。之後將實驗所製作出的薄膜分別經由FTIR、微拉曼光譜儀、紫外-可見光光譜量測、光電特性量測的結果來分析薄膜的結構、矽氫鍵結、吸收光能隙、光暗起電流等特性。實驗結果顯示,以離子束濺鍍系統製作氫化非晶矽薄膜其吸收率在波長400nm可達到40~50%左右,薄膜吸收係數可達到105cm-1,光能隙約為1.7~2.0 eV,且含氫非晶矽薄膜結構為非結晶相。基板溫度由250℃升至350℃、氫流量20sccm不但能改善薄膜Si-H2鍵結特性且鍍率可提升2倍。光電特性部分光暗電流會隨著基板溫度及氫流量的增加而減少,光暗電流比差不到一個數量級左右。
In recent years, due to the energy shortage and global warming lead the green energy issues become very important. The researches in Thin Film Solar Cells received a lot of attentions. To fabricate amorphous silicon thin film solar cells using plasma-enhanced chemical vapor deposition (PECVD) is the most popular method. The disadvantages of PECVD are the high facility cost and using the toxic processing gases such as silane (SiH4). Whereas there is no these disadvantages using ion beam sputter system to deposit silicon thin films. Hydrogenated amorphous silicon thin films have attracted many attentions due to have high mobility and less defect density than the amorphous silicon (a-Si) thin films. In this study, the hydrogenated amorphous silicon (a-Si:H) thin films were fabricated using ion beam sputter system of which the low sputter yield to reduce defect density and correctly control deposited thin films. Therefore, it is a appropriate tool to explore the properties of hydrogenated amorphous silicon (a-Si:H) thin films with the absorption coefficient of 105cm-1. (a-Si:H) thin films were fabricated using different process temperatures and the hydrogen gas flows. The characteristics of deposited film were measured by FTIR, Micro-Raman Spectrometer, UV/Visible spectrometers. The results showed absorptance of the film were reached 40~50% at wavelength of 400nm. The photo energy gap were varied from 1.7~2.0eV depending on the structure of films. The silicon films deposited by ion beam sputter revealed amorphous characters .When the substrate temperature was set at 350℃and hydrogen gas flow was set as 10sccm would favor the formation Si-H2 bond. The analyses of the electrical property show that the dark and photo induced current decreased with increased substrate temperature and hydrogen gas flows.
中文摘要........................................................................................................................i
英文........................................................................................................................ii
目錄........................................................................................................................iii
圖目錄........................................................................................................................v
第一章 緒論............................................................................................................1
1.1 前言............................................................................................................1
1.2 研究目的與動機............................................................................................................3
1.3 離子束濺鍍法的優點............................................................................................................3
第二章 理論基礎............................................................................................................5
2.1 薄膜成長理論............................................................................................................5
2.2 非晶矽薄膜太陽電池...................................................................................10
2.2.1 非晶矽薄膜太陽電池發展歷史............................................................10
2.2.2 光劣化效應........................................................................................11
2.2.3 非晶矽薄膜中矽氫原子鍵結............................................................13
2.3 離子束濺射理.................................................................................................13
2.3.1 離子濺射效應....................................................................................13
2.3.2 離子束濺射靶材之碰撞理論............................................................14
2.3.4 離子束入射角度與濺射率............................................................15
2.4離子束溅鍍及離子源工作原理............................................................16
2.4.1 輝光放電(Glow Discharge) ..............................................................18
2.4.2 離子光學 (Ion Optics) .....................................................................19
2.5 拉曼光譜散射原理.........................................................................................23
2.5.1 拉曼散射的偏極化性........................................................................24
第三章 實驗步驟及實驗設備....................................................................................25
3.1 實驗流程.........................................................................................................25
3.2 實驗設備.........................................................................................................26
3.2.1 離子束濺鍍系統( Ion Beam Sputter Deposition ).........................26
3.2.2 電子束蒸鍍系統(E-beam)................................................................27
3.3 實驗步驟.........................................................................................................28
3.3.1 玻璃基板清潔....................................................................................28
3.3.2 含氫非晶矽薄膜的製備....................................................................29
3.3.3 濺鍍靶材............................................................................................29
3.3.4 鋁電極的成長............................................................................................30
3.4 量測分析設備............................................................................................31
3.4.1 膜厚量測與薄膜成長速率分析..............................................................31
3.4.2 光譜儀量測 (The Measurement of UV/Visible spectrometers )..32
3.4.3 微拉曼光譜儀(Micro-Raman Spectrometer)................................................33
3.4.4 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared,FTIR)...35
3.4.5 電流-電壓量測 (I-V Curve Measurement)……..............................39
第四章 結果與討論.....................................................................................................40
4.1 膜厚與鍍膜速率量測分析...........................................................................40
4.1.1 不同製程溫度對於含氫非晶隙膜厚與鍍膜速率之影響................41
4.2 氫化非晶矽薄膜的光學特性分析.............................................................42
4.2.1 不同製程溫度對於含氫非晶薄膜之光學性質影響....................43
4.2.2 不同製程溫度對於含氫非晶薄膜吸收係數分析............................47
4.2.3 不同製程溫度對於含氫非晶薄膜之光能隙分析............................49
4.3 氫化非晶矽薄膜之結晶性分析............................................................53
4.3.1 基板加溫150℃對不同氫流量的含氫非晶矽結構之影響..............53
4.3.2 基板加溫250℃對不同氫流量的含氫非晶矽結構之影響..............54
4.3.3 基板加溫350℃對不同氫流量的含氫非晶矽結構之影響..............55
4.3.4 氫流量0sccm對基板加溫150℃、250℃、350℃的晶矽結構分析…..................................................................................................................56
4.3.5氫流量10sccm對基板加溫150℃、250℃、350℃的晶矽結構分析………..............................................................................................................59
4.3.6氫流量30sccm對基板加溫150℃、250℃、350℃的晶矽結構分析…..................................................................................................................62
4.4 氫化非晶矽薄膜之成分分析.......................................................................65
4.4.1 基板加溫150℃對不同氫流量之矽氫鍵結分析..............................65
4.4.2 基板加溫250℃對不同氫流量之矽氫鍵結分析..............................67
4.4.3 基板加溫350℃對不同氫流量之矽氫鍵結分析..............................68
4.5 氫化非晶矽薄膜的光電特性分析............................................................69
4.5.1 基板加溫150℃…..............................................................................69
4.5.2 基板加溫250℃..................................................................................71
4.5.3 基板加溫350℃..................................................................................74
第五章 結論................................................................................................................76
參考文獻................................................................................................................77
表 目 錄
表3-1 非晶矽薄膜紅外線吸收模式所對應之鍵結模式….........................................38
表4-1不同氫氣流量與製程壓力對應表............................................................41
表4-2 150℃氫氣流量與製程壓力對應表............................................................52
表4-3 250℃氫氣流量與製程壓力對應表............................................................52
表4-4 350℃氫氣流量與製程壓力對應表............................................................52
表4-5 氫流量10sccm對不同基板溫度之拉曼光譜擬何對應表............................60
表4-6 氫流量30sccm對不同基板溫度之拉曼光譜擬何對應表............................64
圖 目 錄
圖2-1 理想(左圖)及實際(右圖)之薄膜示意圖.............................................................6
圖2-2 三種不同成膜機制之過程示意圖.............................................................7
圖2-3 a-Si薄膜成長之穿透式電子顯微鏡圖.............................................................8
圖2-4 Thornton薄膜之微結構區域示意圖.............................................................9
圖2-5 Messier薄膜之微結構區域示意圖.............................................................10
圖2-6 非晶矽薄膜中Si-Si、Si-H懸浮鍵的鍵結情況示意圖................................12
圖2-7 離子撞擊靶材過程示意圖..............................................................................14
圖2-8 氬離子束對幾種金屬靶的濺射率與入射角的關係......................................16
圖2-9 離子束濺鍍工作原理示意圖..........................................................................17
圖2-10離子源之工作原理示意圖.............................................................................17
圖2-11 離子源的剖面示意圖....................................................................................19
圖2-12 離子源的電位分佈圖....................................................................................20
圖2-13 兩柵極孔徑沒有對齊造成離子束偏向示意圖....................................................21
圖2-14 離子束電流量與兩柵極之關係.......... .........................................21
圖2-15 離子束發散角度與離子束電流Ib關係圖....................................................22
圖2-16 拉曼散射機制圖..................................................................................................24
圖3-1 為實驗流程圖..................................................................................................25
圖3-2 (a) 離子束濺鍍系統示意圖(b)實體圖............................................................26
圖3-3 (a) 真空蒸鍍示意圖 (b)蒸發用電子槍工作原理 (c)實體圖........................28
圖3-4 為金屬-半導體元件示意圖............................................................................30
圖3-5 金屬-半導體-金屬元件電場與空乏區分佈剖面圖.......................................30
圖3-6 α-step膜厚量測示意圖…................................................................................31
圖3-7 α-step膜厚量測實體圖…................................................................................31
圖3-8多功能光譜儀量測反射率示意圖...................................................................32
圖3-9多功能光譜儀量測反射率實體圖...................................................................33
圖3-10微拉曼光譜實體圖.....................................................................................…34
圖3-11 不同結晶相拉曼光譜圖............................................................................…34
圖3-12為FTIR實體圖..........................................................................................…36
圖3-13干涉儀之傅立葉轉換紅外線光譜儀示意圖............................................…36
圖3-14光電特性量測示意圖................................................................................…39
圖4-1 基板上膜厚量測處示意圖..............................................................................40
圖4-2 不同基板溫度及不同氫氣流量與鍍膜速率對應圖......................................42
圖4-3 基板加溫150℃對不同氫流量之穿透率、反射率及吸收率關係圖(a) 0sccm (b) 10sccm....................................................................................................................44
圖4-4基板加溫250℃對不同氫流量之穿透率、反射率及吸收率關係圖(a) 0sccm
(b)10sccm ....................................................................................................................45
圖4-5基板加溫350℃對不同氫流量之穿透率、反射率及吸收率關係圖(a) 0sccm (b) 10sccm....................................................................................................................46
圖4-6不同氫流量對不同基板加溫之吸收係數關係圖(a) 150℃ (b) 250℃ (c) 350℃...........................................................................................................................48
圖4-7 基板加溫150℃氫流量10sccm的Tauc曲線之光能隙擬合圖...................50
圖4-8 基板加溫250℃氫流量10sccm的Tauc曲線之光能隙擬合圖...................50
圖4-9 基板加溫350℃氫流量10sccm的Tauc曲線之光能隙擬合圖...................51
圖4-10不同基板加溫對應不同氫流量氫化非晶矽光能隙的關係圖.....................51
圖4-11 基板加溫150℃對不同氫氣流量拉曼光譜關係圖....................................53
圖4-12 基板加溫250℃對不同氫氣流量拉曼光譜關係圖.....................................54
圖4-13 基板加溫350℃對不同氫氣流量拉曼光譜關係圖.....................................55
圖4-14 氫流量0sccm對不同基板加溫之拉曼光譜擬何圖(a) 150℃ (b) 250℃ (c) 350℃...........................................................................................................................57
圖4-15 未通入氫流量0sccm在不同基板溫度下沉積Si薄膜的拉曼光譜擬合圖.................................................................................................................................58
圖4-16 氫流量10sccm對不同基板加溫之拉曼光譜擬合圖(a)150℃ (b) 250℃ (c) 350℃...........................................................................................................................60
圖4-17 氫流量10sccm對不同基板溫度下沉積Si薄膜的拉曼光譜擬合圖..........61
圖4-18 氫流量30sccm對不同基板加溫之拉曼光譜擬合圖(a) 150℃ (b) 250℃ (c) 350℃...........................................................................................................................64
圖4-19 氫流量10sccm對不同基板溫度下沉積Si薄膜的拉曼光譜擬合圖…......65
圖4-20 基板加溫150℃對不同氫流量Si薄膜之FTIR光譜比較圖.......................66
圖4-21 基板加溫250℃對不同氫流量Si薄膜之FTIR光譜比較圖.......................67
圖4-22 基板加溫350℃對不同氫流量Si薄膜之FTIR光譜比較圖…..................68
圖4-23 基板加溫150℃對不同氫流量Si薄膜之光暗電流電與電壓比(a)0sccm (b)2sccm (c)10sccm (d)20sccm (e)30sccm.................................................................70
圖4-24 基板加溫150℃對不同氫流量Si薄膜之暗電流與電壓比….....................58
圖4-25 基板加溫150℃對不同氫流量Si薄膜之光電流與電壓比.........................71
圖4-29 基板加溫250℃對不同氫流量Si薄膜之光暗電流比(a)0sccm (b)2sccm (c)10sccm (d)20sccm (e)30sccm.................................................................................72
圖4-30 基板加溫250℃對不同氫流量Si薄膜之暗電流比...................................73
圖4-31 基板加溫250℃對不同氫流量Si薄膜之光電流比...................................73
圖4-32 基板加溫350℃對不同氫流量Si薄膜之光暗電流與電壓比(a)0sccm (b)2sccm (c)10sccm (d)20sccm (e)30sccm.................................................................75
圖4-33 基板加溫350℃對不同氫流量Si薄膜之暗電流比與電壓比...................76
圖4-34 基板加溫350℃對不同氫流量Si薄膜之光電流與電壓比.......................76
1. S. O. Kasap,“Pinciple of Electrical Engineering Materials and Devices,” 2nd ed., McGraw-Hill Company, New York, USA,2002.
2. M. Balkanski and R. F. Wallis, “Semiconductor Physics and Applications,” Oxford University Press Inc., New York, USA,2000.
3. P. G. Lecomber, W. E. Spear, and A. Ghaith, “Amorphous-Silicon Field-Effect Device and Possible Application,” Electronics Letters, Vol. 15,No. 6, pp. 179-181, March, 1979.
4. Z. Shengdong, Z. Chunxiang, J. K. O. Sin, J. N. Li, and P. K. T. Mok,“Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass”, IEEE Trans. Electron Devices, 47, 569(2000).
5. David T. Wei , “ Ion beam interference coatings for ultralow optical loss ‟‟ Appl. Opt. , Vol28 , No.14 , p.2813(1989)
6. 莊嘉琛, "太陽能工程-太陽電池篇",台北, 全華科技圖書股份有限公司(1997).
7. 徐進成 , „‟雙離子束濺鍍光學薄膜之研究‟‟ , 中央大學光電科學研究所博士論文, p.14 (1997)。
8. 李正中 , „‟薄膜光學與鍍膜技術‟‟ , 藝軒出版社 , 台北 , p.394 (1999)。
9. Arvind Jain , „‟Energy considerations for preparing thin films by ion beam deposition‟‟ , Thin Solid Film , 219 , p.266(1992)
10. N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053-3060(2002).
11. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11,
80
666-672(1974).
12.R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin filmphysical structure,” J. Vac. Sci. Technol. A 2, 500-503 (1984).
13.莊嘉琛, "太陽能工程-太陽電池篇," 全華科技圖書股份有限公司,- 46 -中華民國九十年十月初版三刷。
14.D.Staebler and C. Wronski, "Reversible conductivity changes in discharge-produced amorphous Si," Appl. Phys. Lett. 31, 292 (1977).
15. A.J. Lewis,G. A.N Conneil, W. Paul and J.R. Pawlik, Proc.Int. Conf. Tetrally Bouded Amorphous Semicond., American Institute of Physics, New York 27 (1974)
16. T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, "Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon," Phys. Rev. Lett. 89, 015502 (2002).
17.P. Stradins, "Light-induced degradation in a-Si: H and its relation to defect creation," Solar Energy Mater. Solar Cells 78, 349-367 (2003).
18.徐進成 , ‟‟ 雙離子束濺鍍光學薄膜之研究 ‟‟ , 國立中央大學光電科學研究所博士論文 , p.15(1997).
19. G. K. Wehner , “ Threshold Energies for Sputtering and the Sound Velocity in Metals “ , Phys. Rev. 93 , p.633 (1954).
20. P. J. Martin , ‟‟ Review Ion-based methods for optical thin filmdeposition ‟‟ , Journal of Materials Science , 21 , pp.1~25(1986).
21. Peter Sigmund , ‟‟Theory of Sputtering Yield of Amorphous and Polycrystalline
81
Target‟‟ , Phys. Rev.184 , 383(1969).
22. H. Fetz , Z. Phys. 119 , 590(1942).
23. John E. Mahan , ‟‟ Physical Vapor Deposition of Thin Films ‟‟ , JohnWiley & Sons , Inc. , pp.218(2000).
24. 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 第四版, pp.283 (1999).
25. J. R. Roth, “Industrial Plasma Engineering Volume 1: Principles,” Institute of PhysicsPublishing Bristol and Philadelphia, pp.102~106 (1995).
26. J Reece Roth , „‟ Industrial Plasma Engineering Volume 1 : Principles ‟‟ , Institute of Physics Publishing Bristol and Philadelphia , pp.199.(1995).
27.Liudvikas Pranevicius, „‟COATING TECHNOLOGY:ION BEAM DEPOSITION ‟‟, Satas & Associates , pp.39. (1993).
28. 李正中, „‟ 薄膜光學與鍍膜技術 ‟‟ , 藝軒圖書出版社, pp.284.(1999).
29. Harold R. Kaufman and Raymond S. Robinson,„‟Operation of Broad-Beam Sources ‟‟ , Commonwealth Scientific Corporation , pp.41.(1987).
36. R. W. Hoffman, in physical of nonmetallic Thin films, edited by C.H.S. Dupuy and A. Cachard, Plenum Press: New York,pp.273 (1969).
37. J. D. Finegan and R.W. Hoffman, “Stress anisotropy in evaporated Iron Films,” J. Appl. Phys. 30, 597-598 (1959).
38. H. S. Story, R.W. Hoffman, J. Appl. Phys. 27, 193 (1956).
39. R. W. Hoffman, F.J. Anders, J. Appl. Phys. 23, 231 (1953).
82
40. H. Makihara, A. Tabata, Y. Mizutani, “Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepare by rf magnetron sputtering”, Vacuum, 59, 785-791(2000).
41. 陳陵援、吳慧眼,"儀器分析,"三民書局,99(2002)。
42. J. M. Seo, M. C. Jeong, and J. M. Myoung, "Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering," J. Cryst. Growth (2006).
43. F. Demichelis, F. Giorgis And F. Porri, PhilosoPhical Magazin, Vol.74, No.2, pp.155-168, 1996.
44. F. Giorgis, PhilosoPhical Magazin, Vol.74, No.4, pp.925-944, 1998.
45.Y. Han, D. Kim, J.–S. Cho, S.-K. Koh, and Y. S. Song, ″Tin-DopedIndium Oxide (ITO) Film Deposition by Ion Beam Sputtering ″, SolarEnergy Material & Solar Cells, 65(2001) p211~218.
46. P. Chaudhuri, Swati Ray and A. K. Barua, “The Effect Of Mixing Hydrogen With Silane On The Electronic and Optical Properties Of Hydrogenated Amorphous Silicon Thin Films, ” Thin Solid Films, Electronics and Optics, Vol 113, pp.261-270, 1984.
47. S.S Lyer, M.Arienzo And E.de Fresat , Appl. Phys. Lett, p.57, 1990.
48. 余合興,光電子學,第四版,pp202-203,民國89年9月,中央圖書出版社
49.N.M. LIAO,W. LI,Y.D. JIANG, Y.J. KUANG, K.C. QI, Z.M.WU and S.B. LI Appl. Phys. A 91, 349–352 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔