(34.201.11.222) 您好!臺灣時間:2021/02/25 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴緯杰
研究生(外文):Wei-chueh Lai
論文名稱:氮化鎵系列發光二極體之不同未摻雜層厚度與不同電子阻擋層銦含量之特性分析
論文名稱(外文):The Analysis of Un-doped GaN Thickness and Electron Blocking Layer with Different Indium Vapor Flow on GaN-based Light Emitting Diodes
指導教授:邱裕中
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:54
中文關鍵詞:發光二極體未摻雜氮化鎵層電子阻擋層靜電保護能力
外文關鍵詞:Light-emitting diodeUndoped GaN layerElectron blocking layerElectrostatic protection ability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文改變了發光二極體結構中未摻雜氮化鎵層之厚度與在沉積電子阻擋層時通入了不同銦氣體流量。並分析探討其對光特性、電特性與靜電保護能力之影響。
我們分別成長2.5 μm、4 μm 以及6 μm 三種不同未摻雜氮化鎵層厚度。並經由研究發現,當厚度為6 μm 的未摻雜氮化鎵層厚度時,沉積於上方n 型氮化鎵所產生之V 型缺陷(V-defect)數量相對地減少。此結果造成了發光二極體整體亮度之提升。而在於2.5 μm 未摻雜氮化鎵層厚度之結構卻有著優異靜電保護能力,其原因為整體阻抗值最大。
另一方面,我們在沉積電子阻擋層時通入了不同之銦氣體流量,分別為0sccm、50 sccm、100 sccm、450 sccm。經由研究後發現,當銦氣體流量增加時,所含的銦濃度也隨之增加。而且當銦氣體流量為100 sccm 時其發光強度表現最為優異,原因為有著較優異之磊晶品質與電子阻擋層有著優異之侷限能力。當銦氣體流量為450 sccm 時,有更多路徑可將靜電放電之能量釋放,因此有著較優異之靜電保護能力。
我們改變了發光二極體結構中未摻雜氮化鎵層之厚度與在沉積電子阻擋層時通入了不同銦氣體流量,分別對於其亮度提升與靜電保護能力提升提供了最佳化之條件。
In this reserch, we changed thickness of undoped GaN layer and different Indium (In) vapor flow of electron blocking layer (EBL). Analysis revealed the distinction influence of optical properties, electrical properties and electrostatic (ESD) protection ability.
The undoped GaN layer thickness were growth of 2.5 μm、4 μm and 6 μm, respectively. It revealed the V-defect density of n-GaN above undoped GaN decreases enormously with increasing the undoped GaN thickness of 6 μm. This result improved the LED luminance characteristic. In thickness of 2.5 μm, it showed the best ESD protection ability. The reason is attributed to that the overall impedance is largest.
The affect of AlGaN EBL deposited with different Indium vapor flow in 0 sccm, 50 sccm, 100 sccm, and 450 sccm, respectively. The result revealed better optical properties in the Indium vapor flow 100 sccm due to the high quality and the good confinement ability of EBL. The Indium vapor flow of 450 sccm has excellent ESD protection ability attributed to the more energy release path of EBL.
We could get improvement of optical properties、electrical properties and ESD protection ability when changing the thickness of undoped GaN layer and different Indium vapor flow of EBL.
摘 要 .......................................................................................................................... 1
Abstract ........................................................................................................................ ii
致 謝 ........................................................................................................................ iii
目 次 .........................................................................................................................iv
圖目錄 .........................................................................................................................vi
第一章 緒論 ................................................................................................................ 1
1.1. 背景與動機 ...................................................................................................1
1.2. 論文組織架構 ...............................................................................................2
第二章 氮化物發光二極體元件特性與原理 .............................................................. 3
2.1. 氮化鎵材料特性與應用 ................................................................................3
2.2. 發光二極體之原理........................................................................................4
2.3. 發光二極體之特性........................................................................................7
第三章 靜電的種類及其重要性 .................................................................................. 8
3.1. 靜電放電測試的目的 ....................................................................................8
3.2. 靜電放電模型 ...............................................................................................9
3.3. 靜電放電防制之作用 .................................................................................. 10
第四章 改變未摻雜層厚度之特性量測與分析 ......................................................... 11
4.1. 亮度電流特性量測與分析 .......................................................................... 11
4.2. 電激發光特性量測分析 .............................................................................. 15
4.3. 電流電壓特性量測與分析 .......................................................................... 17
4.4. 電容電壓特性量測與分析 .......................................................................... 17
4.5. 串聯電阻與整體阻抗計算 .......................................................................... 20
4.6. 靜電放電保護能力測試分析 ...................................................................... 22
第五章 改變電子阻擋層之銦含量之特性量測與分析 ............................................. 25
5.1. 亮度電流特性量測與分析 .......................................................................... 25
5.2. 電流電壓特性量測與分析 .......................................................................... 30
5.3. 電容電壓特性量測與分析 .......................................................................... 30
5.4. 串聯電阻與整體阻抗計算 .......................................................................... 31
5.5. 靜電放電保護能力測試分析 ...................................................................... 32
第六章 總結與展望 ................................................................................................... 39
6.1. 總結 ............................................................................................................. 39
6.2. 展望 ............................................................................................................. 39
參考文獻 .................................................................................................................... 40
[1] Min-An Tsai, Peichen Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S.H. Lin, and S. C. Wang, “Improving Light Output Power of the GaN-Based Vertical-Injection Light-Emitting Diodes by Mg+ Implanted Current Blocking Layer,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 11, JUNE 1(2009).
[2] H.C. Wang, Y.K. Su, Y.H. Chung, C.L. Lin, W.B. Chen, S.M. Chen, ”AlGaInP light emitting diode with a current-blocking structure,” Solid-State Electronics 49(2005)37–41.
[3] H. W. Jang and J. L. Lee,”Enhancement of electroluminescence in GaN-based light-emitting diodes using an efficient current blocking layer,” J. Vac. Sci. Technol. B Volume 23, Issue 6, 2284-2287(2005)
[4] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” APPLIED PHYSICS LETTERS 93, 081108(2008).
[5] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of Pyramidal Patterned Sapphire Substrates for High-Efficiency InGaN-Based Light Emitting Diodes,” Journal of The Electrochemical Society, 153 8 765-770(2006).
[6] Y. J. Lee, T. C. Hsu, H.C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chub, Y. J. Shen, M. H. Hsieh, M. J. Jou, B. J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN–GaN LEDs fabricated on stripe patterned sapphire substrates,” Materials Science and Engineering B 122 (2005) 184–187.
[7] E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park,” Air-voids embedded high efficiency InGaN-light emitting diode,” APPLIED PHYSICS LETTERS 93, 191103 (2008).
[8] J. Y. Kim, M. K. Kwon, K. S. Lee, S. J. Park, S. H. Kim and K. D. Lee, “Enhanced light extraction from GaN- based green light-emitting diode with photonic crystal,” APPLIED PHYSICS LETTERS 91, 181109(2007).
[9] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Lm, C. Sone, Y. Park, W. J. Choi and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” APPLIED PHYSICS LETTERS 87, 203508(2005).
[10] J. Y. Kim, M. K. Kwon, K. S. Lee, S. J. Park, S. H. Kim and K. D. Lee, ”Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal,” APPLIED PHYSICS LETTERS 91, 181109(2007).
[11] S. J. Kim, “Vertical chip of GaN-based blue light-emitting diode” SOLID-STATE ELECTRONICS, 49 1153–1157(2005).
[12] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee,“Nitride-Based LEDs With 800℃ Grown p-AlInGaN-GaN Double-Cap Layers” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 6, JUNE(2004).
[13] G. S. Huang, H. C. Kuo, M. H. Lo, T. C. Lu, J. Y. Tsai, S. C. Wang, “Improvement of efficiency and ESD characteristics of ultraviolet light-emitting diodes by inserting AlGaN and SiN buffer layers,” Journal of Crystal Growth 305(2007)55–58.
[14] S. E. Park, S. M. Lim, C. R. Lee, C. S. Kim, Byungsung O, “Influence of SiN buffer layer in GaN epilayers,” Journal of Crystal Growth 249(2003)487–491
[15] D. B. Li, Masakazu Aoki, Hideto Miyake, Kazumasa Hiramatsu, “Improved surface morphology of flow-modulated MOVPE grown AIN on sapphire using thin medium-temperature AIN buffer layer,” Applied Surface Science 253(2007)9395–9399
[16] Y. B. LEE, T. WANG, Y. H. LIU, J. P. AO, Yuji IZUMI, Yves LACROIX, H. D. LI, J. Bai, Yoshiki Naoi and Shiro Sakai, “High-Performance 348nm AlGaN/GaN-Based Ultraviolet-Light-Emitting Diode with a SiN Buffer Layer,” Jpn. J. Appl. Phys. Vol. 41(2002)4450–4453.
[17] S. J. Chang, C. F. Shen, S. C. Shei, R. W. Chuang, C. S. Chang, W. S. Chen, T. K. Ko, and J. K. Sheu, “Highly Reliable Nitride-Based LEDs With Internal ESD Protection Diodes” IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 6, NO. 3, SEPTEMBER(2006).
[18] S. J. Chang, C. H. Chen, Y. K. Su, Senior Member, IEEE, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD Protection by Combining InGaN–GaN MQW LEDs With GaN Schottky Diodes” IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 3, MARCH(2003).
[19] S. C. Shei, J. K Sheu, and C. F. Shen, “Improved Reliability and ESD Characteristics of Flip-Chip GaN-Based LEDs With Internal Inverse-Parallel Protection Diodes” IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 5, MAY (2007).
[20] G. R. James, F. Omnès, and A. W. R. Leitch, “Investigating the electrical properties of Si donors in AlxGa1–xN alloys,” phys. stat. sol. (b) 243, No. 7, 1609–1613(2006).
[21] T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and H. Kuan, “Current Spreading and Blocking Designs for Improving Light Output Power from the Vertical-Structured GaN-Based Light-Emitting Diodes,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 9, MAY 1,(2008).
[22] J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee, and C. C. Sun, “Electrical-Optical Analysis of a GaN/Sapphire LED Chip by Considering the Resistivity of the Current-Spreading Layer,” OPTICAL REVIEW Vol. 16, No. 2(2009)213–215.
[23] Y. H. Liu, H. D. Li, J. P. Ao, Y. B. Lee, T. Wang, S. Sakai, “Influence of undoped GaN layer thickness to the performance of AlGaN⁄GaN- based ultraviolet light-emitting diodes” Journal of Crystal Growth 268(2004) 30–34.
[24] Naotaka Kurod, Chiaki Sasaok, Akitaka Kimura, Akira Usui, Yasunori Mochizuki,” Precise control of pn-junction profiles for GaN-based LD structures using GaN substrates with low dislocation densities,” Journal of Crystal Growth 189/190(1998)551-555.
[25] Y. A. Chang, C. Y. Luo, H. C. Kuo, Y. K. Kuo, C, F. Lin and S. C. Wang, “Simulation of InGaN Quantum Well Laser Performance Using Quaternary InAlGaN Alloy as Electronic Blocking Layer” Japanese Journal of Applied Physics., vol. 44, no. 11, pp. 7916-7918(2005).
[26] E. Dimakis, E. Iliopoulos, K. Tsagaraki, and A. Georgakilas, ”Self-regulating mechanism of InN growth on GaN(0001)by molecular beam epitaxy; from nanostructures to films,” phys. stat. sol. (a) 203, No. 7, 1686–1690(2006).
[27] Z. L. Weber, R. E. Jones, H. C. M. van Genuchten, K. M. Yu, W. Walukiewicz, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, “TEM studies of as-grown, irradiated and annealed InN films,” Physica B 401–402(2007)646–649
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 100.黃明月(1992)。隔空教育中教學互動方法之探討。社會教育學刊,21,209-231。
2. 92.曾信超(2006)。服務品質、關係價值與關係品質對顧客忠誠度影響之研究 。企業管理學報。
3. 69.許世芸、蔡進發、蕭至惠、李佳臻(2007)關係行銷對服務品質、關係品質與顧客忠誠度影響之研究。管理實務與理論研究。1(1),144-166。
4. 34.林孟璋、莊世杰、陳貴英(2004)。網路零售業顧客忠誠度之研究。行銷評論,1(2),111-133。
5. 75.郭生玉(1980)。教師期望與教師行為及學生學習行為關係之分析。教育心理學報,13,133-152。
6. 71.許志錠 (1992 )。人際關係與心理健康。警學叢刊,22( 4 ),74- 75。
7. 91.彭泗清、楊中芳(1999)。「人際交往關係的影響因素與發展過程」,本土心理學研究,12,91-312。
8. 38.林義男(1983)。大學師生的非正式互動與學生學習成果的關係。輔導學報,6,125-148。
9. 3.方世榮、陳連勝、張雅婷(2008)。顧客關係傾向與關係品質之探討-以科技介入與涉入程度為干擾變項。東吳經濟商學學報,60,1-38。
10. 139.蘇建文(1981)。兒童及青少年基本情緒之縱貫研究。教育心理學報,第14 期,79~102 頁。
11. 137.羅寶鳳(2005)。從自體心理學的理論分析師生關係及其對人格建構的影響。教育與心理研究,28(2),325-352。
12. 44.侯錦雄(1999)。形式魅影-金門觀光的戰地異境想與與體驗。觀光研究學報,5(1),9-53。
13. 28.沈進成、吳雅筠、王致遠、戴文惠(2006)。旅行社聯營模式關係行銷、關係品質與關係績效影響關係之研究。運動休閒餐旅研究,1(4),66-86。
14. 23.李城忠、張可欣(2005)。健康體適能運動俱樂部顧客關係與行為意向之研究-以台中市為例。運動休閒管理學報,2(1),40-56。
15. 135.簡茂發(1984)。國小教師教導態度與學童生活適應之關係。教育心理學報,17,99-120。
 
系統版面圖檔 系統版面圖檔