[1] K. H. Chiappa, “Evoked potentials in clinical medicine. Third edition,” Philadelphia: Lippincott, 1997.
[2] D. Regan, “Evoked potentials in psychology, sensory psychology and clinical medicine,” Chapman and Hall, 1972.
[3] A. M. Halliday, “Evoked potentials in clinical testing,” Churchill Livingstone, 1982.
[4] N. W. Perry and D. G. Childers, “The human visual evoked response: method and theory,” Spring field: Illinois, 1969.
[5] M. J. Aminoff, “Electrodiagnosis in clinical neurology,” Churchill Livingstone, 1980.
[6] D.O. Walter, “A posteriori wiener filtering of average evoked response,” Electroenceph clin Neurophysio, vol. 27, pp. 61-70, 1969.
[7] D. J. Doyle, “Some comments on the use of Wiener filtering in the estimation of evoked potentials,” Electroenceph clin Neurophysiol, vol. 38, pp. 533-4, 1975
[8] J. P. de Weerd, “A posteriori time-varying filtering of averaged evoked potentials. I. Introduction and conceptual basis,” Biol Cybern, vol. 41, pp. 211-22, 1981.
[9] J.P. Weerd and J.I. Kap, “A posteriori time-varying filtering of averaged evoked potentials. II. Mathematical and computational aspects,” Biol Cybern, vol. 41, pp. 223-34, 1981.
[10] S. Nishida, M. Nakamura, S. Suwazono, M. Honda, T. Nagamine and H. Shibasaki, “Automatic detection method of P300 waveform in the single sweep records by using a neural network,” Med Eng Phys, vol. 16(5), pp. 425-9, 1994
[11] T. D. Lagerlund, F. W. Sharbrough and N. E. Busacker, “Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition,” J Clin Neurophysiol, vol. 14(1), pp.73-82 1997.
[12] S. Casarotto, A. M. Bianchi, S. Cerutti and G. A. Chiarenza, “Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children,” J Clin Neurophysiol, vol. 115, pp.609-19, 2004.
[13] A. Effern, K. Lehnertz, G. Fernandez, T. Grunwald, P. David and C. E. Elger, “Single trial analysis of event related potentials: non-linear de-noising with wavelets,” Clinical Neurophysiology, vol. 111, pp. 2255-2263, 2000.
[14] P. Comon, “Independent component analysis, A new concept,” Signal Processing, vol. 36(3) , pp. 287-314, 1994.
[15] A. C. Tang, J. Y. Liu and M. T. Sutherland, “Sutherland. Recovery of correlated neuronal sources from EEG: The good and bad ways of using SOBI,”
NeuroImage, vol. 28(2), pp. 507-519, 2005.
[16] P. V. Hese, W. Philips and J. D. Koninck, “Automatic detection of sleep stages using the EEG,” Engineering in Medicine and Biology Society, Proceedings of the 23rd Annual International Conference of the IEEE, vol. 2, pp. 1944-1947, 2001.
[17] A. Flexer, G. Georg and G. Dorffner, “A reliable probabilistic sleep stager based on a single eeg signal,” Artificial Intelligence in Medicine, vol, 33(3), pp. 199-207, 2005.
[18] C. Berthomier, X. Drouot,M. Herman-Stoica, P. Berthomier, J. Prado, D. Bokar-Thire, O. Benoit, J. Mattout and M. P. d'Ortho “Automatic analysis of single-channel sleep eeg: Validation in healthy individuals,” Sleep, vol. 30(11), pp. 1587-1595, 2007.
[19] T. Penzel and R. Conradt “Computer based sleep recording and analysis,” Sleep Medicine Review, vol. 4, pp. 131-148, 2000.
[20] F. Lopes and Silva. “Computer-assisted eeg diagnosis: Pattern recognition techniques,” Electroencephalography, Basic Principles, Clinical Applications and Related Fields, vol. 53, pp. 871-897, 1987.
[21] B. Hjorth, “Time domain descriptors and their relations to a particular model for generation of eeg activity,” Computerized EEG Analysis, pp. 3-8, 1975.
[22] E. Estrada, H, Nazeran, P. Nava, K. Behbehani, J. Burk and E. Lucas, “EEG feature extraction for classification of sleep stages,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, vol. 1, pp. 196-199, 2004.
[23] M. Jobert, C. Timer, E. Poiseau and H. Schulz “Wavelets - a new tool in sleep biosignal analysis,” Journal of Sleep Research, vol. 3, pp. 223-232, 1994.
[24] E. Oropesa, H, L. Cycon and M. Jobert, “Sleep Stage Classification using Wavelet Transform and Neural Network,” Proceedings of the fifth joint conference on information sciences, vol. 1(2), pp. 811-814, 2000.
[25] J. Fell, J. Röschke, K. Mann and C. Schäffner, “Discrimination of sleep stages: a comparison between spectral and nonlinear eeg measures,” Electroencephalography and Clinical Neurophysiology, vol. 98, pp. 401-410, 1996.
[26] A. U. Rajendra and F. Oliver, “Non-linear analysis of eeg signals at various sleep stages,” Computer Methods and Programs in Biomedicine, vol. 80(1), pp. 37–45, 2005.
[27] J. Cafferel, G. J. Gibson, J. P. Harrison, C. J. Griffiths and M. J. Drinnan, ”Comparison of manual sleep staging with automated neural network-based analysis in clinical practice,” International Federation for Medical and Biological Engineering, vol. 44, pp. 105-110, 2006.
[28] S. Gudmundsson, T. P. Runarsson and S. Sigurdsson, “Automatic Sleep Staging using Support Vector Machines with Posterior Probability Estimates,” Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference Intelligent Agents, Web Technologies and Internet Commerce IEEE computer society, vol. 28, pp. 366-372, 2005.
[29] T. Wei-Chih, L. Shih-Wei, T. Chin-Mong, K. Cheng-Yan and L. Hsiu-Hui, “Harmonic parameters with HHT and Wavelet transformation for automatic sleep stages scoring,” Proceedings of world academy of science, engineering and technology, vol. 35, pp.176-180, 2007.
[30] L. R. Rabiner and B. H. Juang, “An introduction to hidden markov models,” IEEE ASSP Magazine, vol. 3, pp. 4-16, 1986.
[31] G. Hansen, “Evoked Potentials-Introduction to Clinical Measurements and Evaluation,” Published by DANTEC EME Documentation Department, 1984.
[32] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, G. E. Holder and Vaegan, “Visual evoked potentials standard,” Documenta Ophthalmologica, vol. 108, pp. 115–123, 2004.
[33] M. Maeda, A. Takajko, K. Inoue, K. Kumamaru, S. Matsuoka, “Time-Frequency Analysis of Human Sleep EEG and Its Application to Feature Extraction about Biological Rhythm,” SICE Annual Conference, pp. 17-20, 2007.
[34] T.W. Lee, “Independent component analysis: Theory and Application,” Kluwer Academic Publishers, 1998.
[35] A. Hyvarinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 14, pp. 411-430, 2000.
[36] P. Comon, “Independent component analysis: A new concept,” Signal Processing, vol. 36, pp. 287-314, 1994.
[37] R. U. Acharya, O. N. Faust, T. Chua and S. Laxminarayan, “Non-linear analysis of EEG signals at various sleep stages,” Computer Methods and Programs in Biomedicine, vol. 80, pp.37-45, 2005.
[38] M. Akay, “Nonlinear biomedical signal processing-dynamic analysis and processing,” Institute of Electrical and Electronics Engineers, 2001.
[39] S. M. Pincus, “Approximate entropy: a complexity measure for biological time series data,” Institute of Electrical and Electronics Engineers, pp. 35-36, 1991.
[40] S. M. Pincus. “Approximate entropy as a measure of system complexity, ” Institute of Electrical and Electronics Engineers, vol. 88, pp. 2297-2301, 1991.
[41] J. Bruhn, Hi. Röpcke and A. Hoeft, “Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia,” Anesthesiology, 2000.
[42] J.S. Richman and R. J. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Cire Physiol, vol. 278, pp. 2039-2049, 2000.
[43] G. Jiayi, Z, Peng and Z. Xin,W. Mingshi, “Sample entropy analysis of sleep EEG under different stages,” Proceedings of IEEE/ICME International Conference on Complex Medical Engineering, pp.1499-1502, 2007.
[44] P. Grassberger, “Procaccia, estimation of kolmogorov Entropy from a chaotic signal,” Phys Rev A, vol. 28, pp. 2591-2593, 1983.
[45] 李郁萱,利用單通道腦電波進行自動睡眠分期之快速動眼期睡眠剝奪,國立交通大學生醫工程研究所碩士論文,2008。[46] 王文彥,以單眼眼動圖進行睡眠階段判讀,國立中山大學機械與機電工程學系研究所碩士論文,2008。[47] 唐維志,腦波的特徵擷取用於自動睡眠分期,國立台灣大學資訊工程學研究所碩士論文,2007。[48] 舒晨,單通道腦波睡眠品質評估系統,國立陽明大學醫學工程研究所碩士論文,2008。[49] 湯雅雯,腦波量測系統之研製與腦波信號之非線性分析,國立成功大學電機工程學系碩士論文,2005。[50] 陳柏村,利用Approximate Entropy與Complexity的理論來建立麻醉深度預測系統,元智大學機械工程研究所碩士論文,2006。
[51] PhysioNet, Inc., http://www.physionet.org
[52] NeuroScan, Inc., http://www.neuroscan.com/landing.cfm
[53] Compumedics, Inc., http://www.compumedics.com/products.asp?p=39#
[54] 劉勝義,“臨床睡眠檢查學”,合記圖書出版社,2004。
[55] H. Ocak, “Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy,” Expert Systems with Applications, vol. 36, pp. 2027-2036, 2009.