(34.201.11.222) 您好!臺灣時間:2021/02/25 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江政毅
研究生(外文):Cheng-Yi Chiang
論文名稱:具電子變速之電動載具驅動系統設計與實現
論文名稱(外文):Design and Implementation of Drives for Electric Vehicles with Continuous Transmission
指導教授:王明賢王明賢引用關係
指導教授(外文):Ming-Shyan Wang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:112
中文關鍵詞:永磁無刷直流馬達Wye結線Delta結線電子變速系統
外文關鍵詞:Brushless DC motorWye winding connectionDelta winding connectiondrive system with variable speed ratio
相關次數:
  • 被引用被引用:2
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於全球能源危機的壓力與節能減碳的訴求,利用電能取代燃油引擎的電動車輛再度受到重視,世界各大車廠也積極投入電動車輛的相關研究。然而在台灣電動機車無法普遍的原因,主要礙於一些關鍵技術,如續航力不足、效率不高、加速性不良、及爬坡力欠佳外,電動機車之結構亦是一重要因素。因此電動機車在未來的改善必然得從車身減重,動力系統性能提升及電池性能與能源使用效率等方面來著手。
而本論文將以電動載具的驅動系統為研究主軸,設計與實現一高安全性、高效率且具有電子變速系統的驅動硬體與軟體架構,藉由電子式開關的切換將永磁無刷直流馬達操作於Wye結線狀態與Delta結線狀態,以達到低速高扭力,與高極速範圍能夠兼具的效果,使馬達之輸出能夠符合一般電動載具所需的動力需求,並將行車阻抗與馬達特性曲線進行分析比對,以定義出電子變速系統的最佳切換條件。最後,將分析結果實現於高安全性的驅動硬體架構與切換模組,並整合於實際電動載具,以驗證本論文所提之相關技術的性能與表現。
As the issue of global energy crisis and carbon reduction gains the highlight once more, the world's leading car factories are actively focusing the research of electric vehicles to replace internal combustion engine vehicles. However, there are some shortcomings of electric vehicles to be overcome, such as travel distance limit, low efficiency, low acceleration ability, poor climbing ability, and vehicle structure. As a result, the development of electric vehicles in the future will include weight reduction, enhancement of power system performance, battery performance and energy efficiency.
This thesis presents the design and implementation of a high security, high energy efficiency drive system with continuous transmission for electric vehicles. With power switches control, the brushless DC motor changeovers the variable winding structure between Wye and Delta winding connections to provide the electric vehicle power requirements of high torque at low speed and high-speed range. With the aid of road resistance and motor characteristic curves, the optimal changeover point is found.
Finally, the proposed drive is integrated into one commercial electric vehicle to verify the performance of related technologies.
摘 要.......................................................... I
Abstrat ........................................................II
誌 謝...........................................................III
目 錄...........................................................IV
圖目錄...........................................................X
表目錄...........................................................XVII
第一章 緒論.......................................................1
  1.1 前言......................................................1
  1.2 研究動機與文獻回顧 .........................................2
  1.3 論文章節架構...............................................6
第二章 永磁無刷馬達概述.............................................7
  2.1 永磁式無刷直流馬達之簡介.....................................7
  2.2 永磁式無刷直流馬達之驅動方法 ................................10
    2.2.1 Wye結線繞組之驅動方法 ................................10
     2.2.1.1 Wye結線繞組之120度導通模式......................11
     2.2.1.2 Wye結線繞組之180度導通模式......................12
    2.2.2 Delta結線繞組之驅動方法...............................12
     2.2.2.1 Delta結線繞組之120度導通模式....................14
     2.2.2.2 Delta結線繞組之180度導通模式....................15
  2.3 Wye/Delta結線通用驅動方法..................................16
  2.4 無刷直流馬達之數學模型與推導.................................18
    2.4.1 Wye結線繞組..........................................18
    2.4.2 Delta結線繞組........................................20
    2.4.3 輸出動力特性曲線比較...................................25
第三章 輪轂型電動載具之電子變速設計...................................27
  3.1 載具之行車需求..............................................27
  3.2 常見之無機械機構之變速方法....................................30
    3.2.1 弱磁控制..............................................30
    3.2.2 調變轉子永久磁鐵的磁場..................................31
    3.2.3 改變軸向磁通...........................................32
    3.2.4 複激式馬達.............................................33
    3.2.5 繞組變結構.............................................33
     3.2.5.1兩段式變結構-串/並聯切換...........................34
     3.2.5.2兩段式變結構- Wye/Delta結線繞組切換................35
     3.2.5.3兩段式變結構-中間抽頭式切換.........................36
     3.2.5.4多段式變結構......................................37
  3.3 電子式變速器換檔策略之設計.....................................38
    3.3.1 Wye/Delta結線繞組之切換架構.............................38
    3.3.2 速度估測器.............................................39
    3.3.3 電流回授訊號...........................................40
   3.3.4 結構開關分段切換方法....................................41
     3.3.4.1 Wye切換至Delta..................................42
     3.3.4.2 Delta切換至Wye..................................44
    3.3.5 變速切換時機與切換暫態之探討.............................45
     3.3.5.1 馬達特性曲線之切換點探討..........................45
     3.3.5.2 含行車阻力狀況之切換點探討.........................47
第四章 行車阻力與硬體架構的分析與探討...................................49
  4.1 行車阻力分析與馬達規格的選用...................................49
4.1.1 車輛之行車阻力.........................................49
     4.1.1.1 滾動阻力.........................................50
     4.1.1.2 空氣阻力.........................................50
     4.1.1.3 爬坡阻力.........................................51
     4.1.1.4 加速阻力.........................................51
     4.1.1.5 行車阻力.........................................52
4.1.2 馬達規格的選用.........................................52
     4.1.2.1 行車阻力計算.....................................53
     4.1.2.2 決定馬達功率及整車設計指標.........................55
4.1.3 電氣規格的選用.........................................56
     4.1.3.1 Wye結線繞組與行車阻力比較..........................57
     4.1.3.2 Delta結線繞組與行車阻力比較........................57
     4.1.3.3 變結構馬達與行車阻力比較...........................58
  4.2 硬體架構的分析與探討..........................................61
4.2.1 緩啟動的設計...........................................61
4.2.2 防上下臂短路設計.......................................62
4.2.3 電流訊號快充慢放設計....................................63
4.2.4 MOSFET閘極電阻的選擇...................................65
4.2.5 結構開關的選擇.........................................67
第五章 系統架構與實驗結果.............................................68
  5.1 系統硬體架構.................................................68
5.1.1 DSP TMS320F2812......................................68
5.1.2 變結構馬達............................................69
5.1.3 馬達驅動級............................................70
5.1.4 結構切換模組...........................................72
5.1.5 動力加載平台...........................................73
  5.2 實驗一:不同繞組結構之反電動勢常數與轉矩常數.....................74
5.2.1 Wye結線繞組...........................................74
5.2.2 Delta結線繞組.........................................76
  5.3 實驗二:Delta結線繞組環流之影響................................78
  5.4 實驗三:Delta結線繞組所需相移30度之換相信號.....................79
5.4.1 軟體程式架構...........................................79
5.4.2 電壓電流量測驗證.......................................80
  5.5 實驗四:依照馬達特性曲線之電子變速實現...........................82
5.5.1 Wye結線繞組輸出特性曲線.................................82
5.5.2 Delta結線繞組輸出特性曲線...............................83
5.5.3 Wye切換點的定義........................................84
5.5.4 軟體程式架構...........................................85
5.5.5 切換暫態..............................................87
     5.5.5.1 結構切換之實現....................................87
     5.5.5.2 切換點調配之實現..................................89
  5.6 實驗五:依照控制曲線之電子變速實現於電動載具.....................91
5.6.1 Wye結線繞組控制特性曲線.................................92
5.6.2 Delta結線繞組控制特性曲線...............................93
5.6.3 切換條件的定義.........................................94
5.6.4 軟體程式架構...........................................96
5.6.5 結構切換之實現.........................................98
  5.7 實驗六:硬體保護與整合........................................100
5.7.1 限電流保護............................................100
5.7.2 系統緩啟動............................................102
5.7.3 整合於實車............................................103
第六章 結論與未來研究建議............................................104
  6.1 結論.......................................................104
  6.2 未來研究建議................................................105
參考文獻...........................................................106
作者簡介...........................................................111
[1]W. S. Worley, “Designing Adjustable-Speed V-Belt Drives for Farm Implements,” SAE Transactions, Vol. 63, pp. 321-333, 1995.
[2]M. C. Tsai, M. C. Chou, and C. L.Chu, “Control of a Variable Winding Brushless Motor with the Application in Electric Scooters,” Proc. IEMDC’01, Massachussets, USA, pp. 922-925, 2001.
[3]C. H. Chen and M. Y. Cheng, “Study on a Wide Speed Range Integrated Electrical Transmission System,” Proc. 6th IEEE Int. Conf. on Power Electronics and Drive Systems, Kuala Lumpur, Malaysia, pp. 781-786, 2005.
[4]J. R. Hendershot Jr. and T. J. E. Miller, Design of Brushless Permanent-Magnet Motors, Oxford University, Oxford, UK, 1994.
[5]R. Krishnan, Electric Motor Drives, Modeling, Analysis, and Control, Prentice Hall, USA, 2001.
[6]C. C. Chan, J. Z. Jiang, W. Xia, and K.T. Chau, “Novel Wide Range Speed Control of Permanent Magnet Brushless Motor Drives,” IEEE Trans. Power Electron, Vol. 10, No. 5, pp. 539-546, Sep. 1995.
[7]J. F. Gieras, R. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, Kluwer Academic Publishers, Netherlands, 2004.
[8]L. Ma, M. Sanada, S. Morimoto, and Y. Tekeda, “Advantages of IPMSM with Adjustable PM Armature Flux Linkage in Efficiency Improvement and Operating Range Extension,” in Proceeding of PCC 2002, Osaka, Japan, pp. 136-141, 2002.
[9]N. Bianchi, S. Bolognani, and M. Zigliotto, “High-Performance PM Synchronous Motor Drive for an Electrical Scooter,” IEEE Trans. Ind. Applicat., Vol. 37, No. 5, pp. 1348-1355, Sep./Oct. 2001.
[10]F. Caricchi, F. Crescimbini, F. Mezzetti, and E. Santini, “Multistage Axial-Flux PM Machine for Wheel Direct Drive,” IEEE Trans. Ind. Applicat., Vol. 32, No. 4, pp. 882-886, July./Aug. 1996.
[11]G. H. Chen and K. J. Tseng, “Design of a Permanent-Magnet Direct-Driven Wheel Motor Drive for Electric Vehicle,” in Proc. of the IEEE PESC’96, Cambridge, Massachusetts, USA, Vol. 2, pp. 23-27, June 1996.
[12]K. Rahman, N. Patel, T. Ward, J. Nagashima, F. Caricchi, and F. Crescimbini, “Application of Direct Drive Wheel Motor for Fuel Cell Electric Hybrid Electric Vehicle Propulsion System,” in Proc. of the 39th IEEE Ind. Applicat. IAS Annual Meeting, Vol. 3, pp. 1420-1426, Oct. 2004.
[13]L. Solero, O. Honorati, F. Caricchi, and F. Crescimbini, “Nonconventional, Three-Wheel Electric Vehicle for Urban Mobility,” IEEE Trans. Vehicular Technology Vol. 50, No. 4, pp. 1085-1091, July 2001.
[14]M. Suzuki and D. Wang, “Development of In-Wheel Type Integrated Motor Axle Unit,” NTN Technical Review, No.73, 2005.
[15]S. Wu, L. Song, and S. Cui, “Study on Improving the Performance of Permanent Magnet Wheel Motor for the Electric Vehicle Application,” IEEE Trans. Magnetics, Vol. 43, No. 1, pp. 438-442, Jan. 2007.
[16]Y. P. Yang, J. P. Wang, S.W. Wu, Y. P. Luh, “Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles-Part II: Optimal Current Waveforms and Performance Test,” IEEE Trans. Magnetics, Vol. 40, No. 4, pp. 1883-1891, July 2004.
[17]Y. P. Yang, Y. P. Luh, C. H. Cheung, “Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles-Part I: Multiobjective Optimal Design and Analysis,” IEEE Trans. Magnetics, Vol. 40, No. 4, pp. 1873-1882, July 2004.
[18]Y. P. Yang and D. S. Chuang, “Optimal Design and Control of a Wheel Motor for Electric Passenger Cars,” IEEE Trans. Magnetics, Vol. 43, No. 1, pp. 51-61, Jan. 2007.
[19]C. H. Chen and M. Y. Cheng, “Design of a Multispeed Winding for a Brushless DC Motor and It’s Sensorless Control,” in Proc. of the IEE Electr. Power Applicat., Vol. 153, No. 6, pp. 834-841, 2006.
[20]H. Huang and L. Chang, “Electrical Two-Speed Propulsion by Motor Winding Switching and It’s Control Strategies for Electric Vehicles,” IEEE Trans. Vehi. Technol., Vol. 48, No. 2, pp. 607-618, 1999.
[21]A. Boglietti, M. Lazzari, M. Pastorelli, and W. Viglietti, “Induction Motor Winding Commutation with Direct Field Oriented Control for Wide Constant Power Range Operation,’ in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, San Diego, USA, pp. 551-557, 1996.
[22]B. Q. Kou, C. Y. Li, and S. K. Cheng, “A New Flux Weakening Method of Permanent Magnet Synchronous Machine,” in Proc. of the IEEE ICEMS’05, Vol. 1, pp. 500-503, Sept. 2005.
[23]J. S. Lawer, J. M. Bailey, J. W. Mckeever, J. Pinto, “Limitations of The Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motors,” in Proc. of the IEEE SoutheastCon, Columbia, pp. 174-179, 2002.
[24]T. M. Jahns, “Component Rating Requirements for Wide Constant Power Operation of Interior PM Synchronous Machine Drives,” in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, Rome, Italy, pp. 1697-1704, 2000.
[25]K. Liang, W. Xuhui, X. Shan, and F. Tao, “The Study of Bypass Hybrid Excitation Synchronous Motors with Extended Field-Weakening Capability,” in Proc. of the IEEE ICEMS’08, Wuhan, China, pp. 3627-3631, Oct. 2008.
[26]L. Vido, M. Gabsi, M. Lecrivain, Y. Amara, F. Chabot, “Homopolar and Bipolar Hybrid Excitation Synchronous Machines,” in Proc. of the IEEE IEMDC’05, San Antonio, USA, pp. 1212-1218, May 2005.
[27]L. Vido, Y. Amara, M. Gabsi, M. Lecrivain, and F. Chabot, “Compared Performances of Homopolar and Bipolar Hybrid Excitation Synchronous Machines,” in Proc. of the 40th IEEE Ind. Applicat. IAS Annual Meeting, Vol. 3, pp. 1555-1560, Oct. 2005.
[28]T. Kosaka and N. Matsui, “Hybrid Excitation Machines with Powdered Iron Core for Electrical Traction Drive Applications,” in Proc. of the IEEE ICEMS’08, Wuhan, China, pp. 2974-2979, Oct. 2008.
[29]Y. Amara, L. Vido, M. Gabsi, E. Hoang, M. Lecrivain, and F. Chabot, “Hybrid Excitation Synchronous Machines: Energy-Efficient Solution for Vehicle Propulsion,” IEEE Trans. Vehicular Technology, Vol. 58, No. 5, pp. 2137-2149, June 2009.
[30]D. Patterson and R. Spee, “The Design and Development of an Axial Flux Permanent Magnet Brushless DC Motor for Wheel Drive in a Solar Powered Vehicle,” in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, Denver, USA, pp. 188-195, 1994.
[31]F. Caricchi, F. Crescimbini, F. G. Capponi, and L. Solero, “Permanent-Magnet, Direct-Drive, Starter/Alternator Machine witch Weakening Flux Linkage for Constant-Power Operation Over Extremely Wide Speed Range,” in Proc. of the IEEE Ind. Applicat. Society Annual Meeting, Chicago, USA, pp. 1626-1633, 2001.
[32]C. Y. Li, B. Q. Kou, S. K. Cheng, and Y. Liu, “Research on Interpolar Leakage Coefficient of PMSM with Variable Magnetic Reluctance in the Exciting Circuit,” in Proc. of the IEEE VPPC’08, Harbin China, pp. 1-4, Sept. 2008.
[33]S. J. Chapman, Electric Machinery Fundamentals, McGraw-Hill, USA, 3rd edn., 1999.
[34]T. Kume, T. Iwakane, T. Sawa, T. Yoshida, and I. Nagai, “A Wide Constant Power Range Vector Controlled AC Motor Drive Using Winding Changeover Technique,” IEEE Trans. Ind. Appl., Vol. 27, No. 5, pp. 934-939, 1999.
[35]周明昌,變結構無刷馬達控制在電動機車之應用,國立成功大學機械工程學系碩士論文,2000。
[36]蔡明勳,智慧型電子式無段變速器於電動載具之設計與實現,國立成功大學電機工程學系碩士論文,2005。
[37]林致揚,具可靠度及高性能驅動系統於電動載具之設計與實現,國立成功大學機械工程學系碩士論文,2009。
[38]林致揚,輕型電動載具之電子變速器設計,馬達科技研究中心電子報,第355期,2009。
[39]楊書楷,混成動力機車之性能模擬與實驗分析,國立虎尾科技大學機械與機電工程研究所碩士論文,2005。
[40]王伯恭,直驅式輪轂馬達於輕型電動機車之整合設計,國立成功大學機械工程學系碩士論文,2009。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔