(54.236.58.220) 您好!臺灣時間:2021/03/06 23:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王顥閔
研究生(外文):Hao-Min Wang
論文名稱:模糊切換雙線性系統之控制器設計
論文名稱(外文):Controller Design of Fuzzy Bilinear Switched Systems
指導教授:邱俊賢邱俊賢引用關係
指導教授(外文):Juing-Shian Chiou
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:65
中文關鍵詞:切換系統雙線性系統T-S模糊模型李亞普諾穩定定理
外文關鍵詞:switched systembilinear systemT-S fuzzy modelLyapunov function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,提出以李亞普諾(Lyapunov)穩定性定理的方法作為基準並對當連續時間或離散時間糢糊切換雙線性系統存在狀態變數切換法則時,使其穩定和設計切換法則之研究。然而,提出的這些方法對於當所有各子系統均是不穩定狀態之下,仍可達到我們期望的控制目標。平行分布補償(Parallel Distributed Compensation, PDC)法是以T-S模糊模型的設計用於模糊控制器上,因而穩定化的問題可簡化成一個必須對於一群線性矩陣不等式中找到存在其中的共同李亞普諾函數的問題。凸面最佳化技術(Convex optimization techniques)利用包含線性矩陣不等式(Linear Matrix Inequalities, LMIs)來找出一個共同李亞普諾函數與穩定的回授增益,滿足模糊切換連續或離散系統。
In this thesis, the methods based on Lyapunov stability theorem to study the stabilization and switching law design for the T-S fuzzy bilinear switched discrete-time and continuous-time systems with state-driven switching method are presented. Furthermore, these methods can be applied to cases when all individual subsystems are unstable. The Parallel Distributed Compensation (PDC) is employed to design fuzzy controllers from the T-S fuzzy models. The stabilization analysis is reduced to a problem of finding a common Lyapunov function for a set of linear matrix inequalities. Therefore, convex optimization techniques involving Linear Matrix Inequalities (LMIs) are utilized to find a common Lyapunov function and stable feedback gains satisfying T-S fuzzy bilinear switched continuous/discrete system.
第一章 緒論 1
1-1 前言 1
1-2 研究動機 5
1-3 研究方法 8
1-4 論文架構 9
第二章 切換系統與T-S模糊模型 10
2-1 切換系統 10
2-1-1 系統說明 11
2-1-2 切換系統之穩定性 12
2-2 模糊邏輯控制器 13
2-2-1 模糊控制概要 13
2-2-2 模糊化(Fuzzifier) 16
2-2-3 知識庫 17
2-2-4 模糊決策邏輯 19
2-2-5 解模糊化(Defuzzifier) 20
2-3 T-S模糊模型 22
2-3-1 T-S模糊連續時間系統模型 23
2-3-2 T-S模糊連續時間系統之穩定性分析 25
2-3-3 T-S模糊連續時間系統之平行分布補償 26
第三章 模糊切換雙線性連續時間延遲系統之控制器設計 28
3-1 簡介 28
3-2 控制器設計 29
3-2-1 系統描述與問題說明 29
3-2-2 穩定性分析 31
第四章 模糊切換雙線性離散時間延遲系統之控制器設計 40
4-1 系統描述與問題說明 40
4-2 控制器設計 44
第五章 結論與未來展望 51
5-1 結論 51
5-2 未來展望 52
[1] M. S. Branicky, “Analysis of continuous switching systems: Theory and examples,”Proceedings. of the American Control Conference, Baltimore,
MD,June, pp. 3110-3114, 1994.
[2] R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson, “Perspectives
and results on the stability and stabilizability of hybrid systems,” Proceedings of the IEEE, Vol. 88, pp. 1069-1082, 2000.
[3] P. J. Antsaklis, “A brief introduction to the Theory and Applications of Hybird systems,” Proceedings of the IEEE, Vol. 88, pp. 879-887, 2000.
[4] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 475-482, 1998.
[5] D. Liberzon and A. S. Mores, “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19, pp. 59-70, 1999.
[6] K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for stable
LTI systems with commuting A-matrices,” IEEE Trans. on Automatic Control,
Vol. 39, pp. 2469-2471, 1994.
[7] C. F. Matrtin and W. P. Dayawansa, “On the existence of a Lyapunov function for a family of switching systems,” In Proc. 35th Conf. Decision and Control, Kobe, Japan, Dec. pp. 1820-1821, 1996.
[8] R. N. Shorten and K. S. Narendra, “On the stability and existence of common Lyapunon function for stable linear switching systems,” In Proc. 37th Conf. Decision and Control, Tampa, Florida, USA, Dec. pp. 3723-3724, 1998.
[9] M. Johansson and A. Rantzer, “Computation of piecewise quadratic Lyapunov function for hybrid systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 555-559, 1998.
[10] R. N. Shorten and K. S. Narenda, “Necessary and sufficient conditions for the existenxe of a common quadratic Lyapunov function for two stable second order linear time-invariant systems,” Proceedings. of the American Control Conference, San Diego, California, June, pp. 1410-1414, 1999.
[11] K. Wulff, R, Shorten and P. Curran, “On the relationship between matrix pencil eigenvalue criteria and the choice of Lyapunov function for the analysis of second order switching systems,” Proceedings. of the American Control Conference, Anchorage, AK, May, pp. 1248-1253, 2002.
[12] 王文俊, 認識Fuzzy, 全華圖書, 第三版, 2008.
[13] Z. Li, C. B. Soh and X. Xu, “Lyapunov stability of a class of hybrid dynamic systems,” 63 Automatica, Vol. 36, pp. 297-302, 2000.
[14] B. Hu, G. Zhai and A. N. Michel, “Common quadratic Lyapunov-like function with associated switching regions for two unstable second-order LTI systems,”
In Proc. 39th Conf. Decision and Control, Svdnev. Australia, Dec. pp. 1391-1396, 2000.
[15] Z. G. Li, C. Y. Wen and Y. C. Soh, “Stabilization of a class of switched systems via designing switching laws,” IEEE Trans. on Automatic Control, Vol. 46, pp. 665-670, 2001.
[16] X. Xu and P. J. Antsaklis, “Stabilization of second-order LTI switched systems,” Int. J. Control, Vol. 73, pp. 1261-1279, 2000.
[17] Kai Wulff, R. Shorten and P. Curran, “On the ° 45 -region and the uniform asymptotic stability of classes of second order parameter-varying and switched systems,” Int. J. Control, Vol. 75, pp. 812-823, 2002.
[18] X. D. Koutsoukos and P. J. Antsaklis, “Design of stabilizing switching control
laws for discrete- and continuous-time linear systems using piecewise-linear Lyapunov functions,” Int. J. Control, Vol. 75, pp. 932-945, 2002.
[19] B. Hu, G. Zhai and A. N. Michel, “Common quadratic Lyapunov-like functions with associated switching regions for two unstable second0order LTI systems,”
Int. J. Control, Vol. 75, pp. 1127-1135,2002.
[20] H. Ishii, T. Basar and R. Tempo, “Randomized algorithms for synthesis of switching rules for multimodal systems,” IEEE Trans. on Automatic Control, Vol. 50, pp. 754-767, 2001.
[21] M. Akar and K. S. Narendra, “On the existense of a common quadratic Lyapunov function for two stable second order LTI discrete-time systems,” Proceedings. of the American Control Conference, Arlington, VA, June, pp. 2572-2577, 2001.
[22] J. Daafouz, P. Riendinger and C. Iung, “Stability analysis and control synthesis
for switched systems: a switched Lyapunov function approach,” IEEE Trans. on Automatic Control, Vol. 47, pp. 1883-1887, 2002.
[23] S. H. Lee, T. H. Kim and J. T. Lim, “Anew stability analysis of switched
systems,” Automatica, Vol. 36, pp. 917-922, 2000.
[24] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” In Proc. 38th Conf. Decision and Control, Phoenix, Arizona, USA, Dec. pp. 2655-26690, 1999.
[25] G. Zhai, B. Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: An average swell time approach,” Proceedings. of the American Control Conference, Chicago, lllinois, June, pp. 200-204, 2000.
[26] G. zhai, B. Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach,”
Int. J. Systems Science, Vol. 32, pp, 1055-1061, 2001.
[27] Z. G. Li, B. Hu, C. Y. wen, Y. C. Soh and A. N. Michel, “A stable transformation for switched linear systems,” Proceedings. of the American Control Conference, Arlington, VA, June, pp. 331-336, 2001.
[28] W. J. Wang and L. G. Man, “Stabilization and estimation for perturbed discrete time-delay large-scale systems,” IEEE Trans. on Automatic Control, Vol. 42, pp. 1277-1282, 1997.
[29] P. L. Liu and T. J. Su, “Robust stability for uncertain large-scale time-delay systems with delay dependence,” Proceedings of the 32nd IEEE conference on Decision and Control, pp. 15-17, 1993.
[30] B. Xu, “On delay-independendent stability of large-scale systems with time delays,” IEEE Trans. on Automatic Control, Vol. 40, pp. 930-933, 1995.
[31] C. H. Chou and C. C. Cheng, “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,” IEEE Trans. on Automatic Control, Vol. 48, pp. 1213-1217, 2003.
[32] H. Wu, “Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections,” IEEE Trans. on Automatic Control, Vol. 47, pp. 1745-1751, 2002.
[33] Z. H. Guan, Y. Q. Liu and X. C. Wen, “Decentralized stabilization of singular and time-delay large-scale control systems with impulsive solutions,” IEEE Trans. on Automatic Control, Vol. 40, pp. 1437-1441, 1995.
[34] J. T. Tsay, P. L. Liu and T. J. Su, “Robust stability for perturbed large-scale time-delay systems,” IEE Proceedings-Control Theory and Applications, Vol.
143, pp. 233-236, 1996.
[35] M. A. Wicks, P. Peleties and R. A. DeCarlo, “Switched controller synthesis for
the quadratic stabilization of a pair of unstable linear systems,” Eur. J. Control, 4(2), pp. 140-147, 1988
[36] Zhou, K. and Khargonekar, P. P., Robust stabilization of linear systems with norm-bounded time-varying uncertainty. System Control Lett., 10, 17-20, 1988.
[37] S. D. Brierley, J. N. Chiasson, E. B. Lee and S. H. Zak, “On stability independent of delay for linear systems,” IEEE Trans. Automat. Control, 27, pp. 252-254,
1982.
[38] P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.
[39] V. B. Kolmanovskii and V. R. Nosov, Stability of Function Differential Equation, Academic Press, London, 1986.
[40] 許禾, “時間延遲T-S模糊切換系統之穩定性分析及控制器設計,”
南台科技大學碩士論文, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔