(18.210.12.229) 您好!臺灣時間:2021/03/01 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:阮誠仁
研究生(外文):Nguyen Thanh Nhan
論文名稱:類神經網絡於直流無刷馬達的控制應用
論文名稱(外文):The Application of Fuzzy Neural Network in Brushless DC Motor Control
指導教授:陳沛仲陳沛仲引用關係
指導教授(外文):Chen, Pei-Chung
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:94
中文關鍵詞:類神經網絡類神經網絡類神經網絡
外文關鍵詞:Fuzzy Neural NetworkFuzzy Neural NetworkFuzzy Neural Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:604
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:243
  • 收藏至我的研究室書目清單書目收藏:0
工業的發展和控制系统的性能及精確度有很大的關聯性。直流無刷馬達(BLDCM)控制系统是一個新穎的變速系統,它提供操作、控制和經濟的優越性,並具有很好的發展潛力,而控制策略對於改善系統品質是非常重要的。基於上述理由,本論文將以類神經網路方法去完成直流無刷馬達的調速系統。
首先,介绍類神經網路的基本概念。然後,提出類神經網路及模糊類神經網路的控制架構。之後研究直流無刷馬達的數學模型。其次,以不同的控制制器來進行數值模擬,即PID控制器、類神經網路控制器及模糊類神經網路控制器。第三,將BLDCM系統的控制程式建立在Code Composer Studio且在DSP2812實現。將三種不同的控制方法應用到我們的系統。最後,將應用傳統的PID控制器,類神經網路控制器及模糊類神經網路控制器的比較結果做呈現及討論,以評估所提出控制方法的有效性
With the development of industry, the performance and precision of control system are being concerned more and more. The brushless DC motor (BLDCM) control system is a novel speed-variable system. It offers excellent characteristics of operation, control and economy, and shows great developing potentiality. To improve the quality of system, control strategy is very important. In view of above-mentioned reasons, a study on neural network to the speed-regulating system of BLDCM is accomplished in this thesis.
Firstly, the basic conception of neural network is introduced systematically. Then, the Neural Network and Fuzzy Neural Network control are presented with a proposed control structure. After that, the mathematical model of BLDCM is studied. Secondly, simulation procedures with various controller are showed, i.e., PID controller, Neural Network controller, and Fuzzy Neural Network controller. Thirdly, the control program of BLDCM system is built in Code Composer and implemented in DSP2812. Three different control approaches are applied to our system. Finally, the comparisons among using traditional PID controller, Neural Network controller, and Fuzzy Neural Network controller are presented and discussed to evaluate the effectiveness of the proposed approaches.
Acknowledgement I
Abstract -摘要 II
Nomenclature III
List of Figures IV
List of Tables V
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Outline 2
Chapter 2 BLDC motor, Digital Signal Processors and Controllers 3
2.1 Brushless DC motor and tree-phase inverter 3
2.1.1 Brushless DC motor structure 3
2.1.2 Brushless DC Motor operation principle 6
2.2 Digital signal processor 11
2.3 PID Controller 18
2.4 Neural Network Controller 20
2.5 Fuzzy Logic Controller 22
2.6 Fuzzy Neural Network Controller 25
Chapter 3 Robust Neural Network and Fuzzy Neural Network Control Systems 28
3.1 Nominal model of BLDC motor 28
3.2 Robust Neural Network Control System 29
3.3 Fuzzy Neural Network Control System 33
Chapter 4 Experiment and Simulations 38
4.1 Experiment Setup 38
4.2 Simulation 42
4.3 Structure of control system 44
4.4 Experimental results 46
Chapter 5 Conclusions 53
Appendix A Simulated result with step reference input 55
Appendix B Simulated result with sinusoidal reference input 63
Appendix C Experimental results with step reference input 72
Appendix D Experimental result with sinusoidal reference input 83
References 89
Biography 91
[1] T. Kenjo and S. Nagamori, Permanent-Magnet and Brushless DC Motors. Oxford:
Oxford University Press, 1985.
[2] M. A. El-Sharkawi, “Development and implementation of high performance
variable structure tracking control for brushless motors,” IEEE Transactions on
Energy Conversion, vol. 6, no. 1, pp. 114-119, 1991.
[3] H. Hashimoto, H. Yamamoto, S. Yanagisawa, and F. Harashima, “Brushless servo
motor control using variable structure approach,” IEEE Transactions on Industry
Applications, vol. 24, no. 1, pp. 160-170, 1988.
[4] F. J. Lin, K. K. Shyu, and Y. S. Lin, “Variable structure adaptive control for PM
synchronous servo motor drive,” IEE Proceedings-Electric Power Applications, vol.
146, no. 2, pp. 173-185, 1999.
[5] N. Matsui and H. Ohashi, “DSP-based adaptive control of a brushless motor,” IEEE
Transactions on Industry Applications, vol. 28, no. 2, pp. 448-454, 1992.
[6] D. R. Seidl, T. L. Reineking, and R. D. Lorenz, “Use of neural networks to identify
and compensate for friction in precision, position controlled mechanisms," IEEE
Industry Applications Society Meeting, vol. 2, pp. 1937-1944, 1992.
[7] T. Fukuda and T. Shibata, “Theory and applications of neural networks for
industrial control systems,” IEEE Transactions on Industrial Electronics, vol. 39,
no. 6, pp. 472-489, 1992.
[8] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems. Englewood Cliffs, NJ: Prentice-
Hall, 1997.
[9] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4–27, 1990.
[10] Y. C. Chen and C. C. Teng, “A model reference control structure using
a fuzzy neural network,” Fuzzy Sets and Systems, vol. 73, pp. 291–312,
1995.
[11]Lin, C.T.: ‘A neural fuzzy control system with structure and parameter learning’, Fuzzy Sets and Syst., 1995, 70, (2-3), pp. 183–212
[12] Juang, C.F., and Lin, C.T.: ‘An on-line self-constructing neural fuzzy inference network and its application’, IEEE Trans. Fuzzy Syst., 1998, 6, (1), pp. 12–32
[13] Campolucci, P., Uncini, A., Piazza, F., and Rao, B.D.: ‘On-line learning algorithms for locally recurrent neural networks’, IEEE Trans. Neural Netw., 1999, 10, pp. 340– 355
[14] H. D. Patino and D. Liu, “Neural network-based model reference adaptive control system,” IEEE Trans. Syst., Man, Cybern. B, vol. 30, no. 1, pp. 198–204, Feb. 2000.
[15] Sellers, David. "An Overview of Proportional plus Integral plus Derivative Control and Suggestions for Its Successful Application and Implementation". Retrieved on 2007-05-05
[16] Texas Instrument documentation, “TMS320F2810, TMS320F2811, TMS320F2812
TMS320C2810, TMS320C2811, TMS320C2812 Digital Signal Processors”, Data manual, Literature Number: SPRS174O April 2001 − Revised July 2007, pp.28-40.
[17] Padmaraja Yedamale, Microchip Technology Inc, “Brushless DC (BLDC) Motor Fundamentals”, AN885, 2003 Microchip Technology Inc.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔