(3.238.7.202) 您好!臺灣時間:2021/02/25 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳建輝
研究生(外文):Chien-Hui Wu
論文名稱:梳狀式電極陣列介電泳晶片應用於微粒之分離
論文名稱(外文):Applying Dielectrophoretic Chip with Comb-shaped Electrode Array for Micro-Particles Separation
指導教授:魏慶華魏慶華引用關係蘇武忠
學位類別:碩士
校院名稱:南台科技大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:76
中文關鍵詞:微機電技術微粒分離介電泳微管道
外文關鍵詞:MEMS technologyparticle separationDielectrophoresismicro channel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本研究運用底部梳狀式電極陣列與上部平面式導電玻璃電極之微流體晶片技術,以不同交流電頻率造成縱向非均勻電場,使流體輸送不同尺寸之微粒在此電場中受到不同介電泳力的影響,而達到快速而有效地分離粒子之目的。
本研究先以CFD-ACE+商用軟體分析在不同交流電壓及不同頻率變化下,不同電極間隙(S)對電極寬度(W)之梳狀式電極陣列在微管道內的電場與電場平方梯度分佈,探討微粒在不同電極幾何尺寸下受介電泳力影響的差異。模擬結果顯示,在電極中央及電極間隙處之電場與電場平方梯度值較低,表示這些區域易使微粒在去離子水中受負介電泳力捕捉。
本研究選用8 μm和16 μm之乳膠粒子,在特定的流率下,觀察不同交流頻率對粒子分離的效果。結果顯示,在200 kHz的交流頻率與3 μL/hr的流率下,16 μm的粒子承受較大的負介電泳力作用而被捕捉至弱電場處(兩電極間隙),且不會被沖走;反之,8 μm的粒子在200 kHz頻率下所承受的負介電泳力較小,致使8 μm的粒子無法被捕捉至弱電場處而被沖離,實現由流體輸送不同尺寸之微粒,在梳狀式電極陣列晶片中,受不同介電泳力的影響,將不同尺寸粒子分離之目的,此現象驗證介電泳力與粒子大小的三次方成正比之理論。
This research reported the separation of fluid carried particles of two different sizes by non-uniform electric field from alternating current (AC) in a dielectrophoretic chip, which was formed by an array of comb-shape electrodes at bottom and plane electrode of Indium Tin Oxide (ITO) at top. Comercial software, CFD-ACE+, was used to simulate the strength of electric filed and the gradient of square of electric filed within the electrodes of the chip, in order to investigate the relationship between the behaviors of particle separation and the size of comb-shap electrodes under different AC voltages and frequencies. The results showed the lower strength of electric filed and the gradient of electric filed square were within the center and the gap of electrodes. Those regions would be favorable to the particles trapping by negative dielectrophoretic force in the fluid of deionized water.
Latex particles with size of 8 μm and 16 μm were used in the experiments to characterize the separation behaviors at a fixed flow rate of 3 μL/hr. The results indicated the particles of 16 μm would have stronger force by negative dielectroporesis at frequency of 200 kHz than those of 8 μm. That caused particles of 16 μm to be trapped to the region of lower electric field strength (within the gap of comb-shape electrodes) and not to be flushed away. However for the particles of 8 μm would not be trapped and would be flushed away. That can be applied for separation of different-seze particles. This phenomenon satisfies with theory of dielectrophoresis, which indicates the dielectrophoretic force is proportional to the cubic power of particle diameter.
摘要……………………………………………………………………………………iv
Abstract…………………………………………………………………………..……v
符號彙編........................................................................................................................vi
致謝…………………………………………………………………………………...vii
目次…………………………………………………………………………...……...viii
表目錄………………………………………………………………………………….x
圖目錄............................................................................................................................xi
第一章 緒論.................................................................................................................1
1.1 前言……………………………………………………...……...…………...1
1.2 研究動機與目的………………………………………………...…………..2
1.3 研究方法……………………………………………………...……………..4
1.4 文獻回顧…………………………………………………...………………..5
1.4.1微陣列分離晶片………………………………...………...…………..6
1.4.2微流體分離晶片………………………………..……………………..8
1.4.3其他種類之分離晶片………………………….…………….………..9
第二章 電動力原理…………………………………………...……………………12
2.1 電雙層…………………………………………...…………………………13
2.2 電泳效應………………………………………………………...…………15
2.3 介電泳效應……………………………………………………...…………15
2.3.1電中性粒子在均勻電場的受力情況……………………...………...16
2.3.2電中性粒子在非均勻電場的介電泳…………………………...…...17
第三章 數值分析模擬……………………………………………...………………22
3.1 電場的模擬…………………………………………...……………………23
3.2 電場平方梯度的模擬……………………………………………...………24
3.3 降低電壓的模擬…………………………………………...………………26
3.4 不同電極間隙與寬度比例設計之模擬……………………………...……28
第四章 晶片製作與實驗方法…………………………………………...…………29
4.1 梳狀式電極陣列介電泳晶片製程……………………………………...…30
4.1.1電極鍍膜製作…………………………………………………...…...30
4.1.2微影製程………………………………………………………...…...31
4.1.3晶片封裝………….……………………………...……….......……...34
4.2 實驗設備……………………………………………………………...……35
4.3 實驗設計與方法………………………………...…………………………37
第五章 實驗結果與討論……………………………………...……………………39
5.1 粒子受介電泳力形成之串珠現象……………………………………...…39
5.2 單一尺寸微粒操控實驗…………………………………………...………41
5.2.1 8 μm微粒操控實驗………………………………………...………42
5.2.2 16 μm微粒操控實驗………………………………………….........44
5.3 8 μm與16 μm混合微粒之分離實驗…………………..………………48
第六章 結論…………………………………………………………………...……50
6.1 數值模擬之結論……………………………………………………...……50
6.2 微粒實驗之結論……………………………………………………...……51
6.3 未來研究方向…………………………………………………...…………52
參考文獻…………………………………………………………...…………………53
附錄A CFD-RC 模擬模型繪製 GEOM Python of S/W為50 μm / 50 μm....56
附錄B CFD-RC 模擬模型設定 ACE 穩態模擬之操作程序………………….58
附錄C MATLAB 程式模擬 介電泳CM factor曲線圖程式………….……….62
作者簡介……………………………………………………………………………...63
[1]L. J. Kricka, J. Cheng, Biochip Technology, Harwood Academic Publishers, Philadelphia, P.A., (2001).
[2]B. A. Simmons, G. J. McGraw, R. V. Davalos , G. J. Fiechtner, Y. Fintschenko and E. B. Cummings, “Development of Polymeric Devices as Dielectrophoretic Separators and Concentrators,” MRS Bulletin, Vol. 31, pp. 120-124, (2006).
[3]S.Chang, and Y. H.Cho, “Continuous Blood Cell Separation Using a Dielectrophoretic Virtual Pillar Array, ” Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, Sanya, China, (2008).
[4]J. Crane and H. A. Pohl, “Use of the Balanced-cell Technique to Determine Properties of Single Yeast Cells,” J. Biological Physical, Vol. 5, pp. 49-74, (1977)
[5]X. B. Wang, Y. Huang, P. R. C. Gascoyne, F. F. Becker, “Dielectrophoretic Manipulation of Particles,” IEEE Transactions on Industry Applications, Vol 33, No3, pp. 660-669, (1997).
[6]A. A. Teixeira-Pinto, L. L. Nejelski, J. L. Cutler, J. H. Heller, “The Behavior of Unicellular Organisms in an Electromagnetic Field,” J. Exp. Cell Res., Vol. 20, pp. 548-564, (1960)
[7]E. G. Cen, C. Dalton, Y. Li, S. Adamia, L. M. Pilarski, K. V.I.S. Kaler, “A Combined Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation Microchip for the Manipulation and Characterization of Human Malignant Cells,” J. of Microbiological Methods, Vol. 58, pp. 387-401, (2004).
[8]J. S. Batchelder, “Dielectrophoretic Manipulator,” Rev. Sci. Instrum., Vol. 54, pp. 300-302, (1983).
[9]H. Morgan, N. G. Green, AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press, UK, (2003).
[10]J.Voldman, R. A. Braff, M. Toner, M. L. Gray, and M. A. Schmidt, “Quantitative Design and Analysis of Single-particle Dielectrophoretic Traps,” presented at Micro Total Analysis Systems, pp. 431-434, (2000).
[11]J. Voldman, M. Toner, M. L.Gray, and M.A. Schmidt, “A Dielectrophoresis-based Array Cytometer,” Transducers, pp. 322-325 (2001).
[12]J. Voldman, M. Toner, M. L.Gray, and M.A. Schmidt. “A Microfabrication-Based Dynamic Array Cytometer.,” Analytical Chemistry, Vol. 74, pp. 3984-3990, (2002).
[13]C. F. Chou, F. Zenhausern. “Electrodeless Dielectrophoresis for Micro Total Analysis Systems,” IEEE Engineering for Medicine and Biology Magazine, Nov./Dec., pp. 62-67, (2003).
[14]C. F. Chou, J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H. Austin, “Electrodeless Dielectrophoresis of Single and Double-stranded DNA,” Biophys. J., Vol. 83, pp. 2170-2179, (2002).
[15]S. Yi, K. S. Seo, Y. H. Cho, “A DNA Trapping And Extraction Microchip Using Periodically Crossed Electrophoresis in a Micropillar Array,” Sensors and Actuators, Vol. 120, pp.429-436, (2005).
[16]S. Chang, Y. H. Cho, “A Continuous Multi-Size Particle Separator Using Negative Dielectrophoretic Virtual Pillars Induced by a Planar Spot Electrode Array,” IEEE 1-4244-0951-9, pp. 19-22, (2007).
[17]Y. Li, K. V.I.S. Kaler, “Dielectrophoretic Fluidic Cell Fractionation System,” Analytica Chimica Acta, Vol.507, No.1, pp.151-161,(2004).
[18]N. U. Suriyage, M. K. Ghantasala, P. Iovenitti, E. C. “Fabrication, Measurement, and Modeling of Electro-osmotic Flow in Micromachined Polymer Microchannels,” BioMEMS and Nanotechnology, Vol. 5275, pp. 149-160, (2004)
[19]T. Sikanen, S. Tuomikoski, R. Ketola, R. Kostiainen, S. Franssila, T. Kotiaho, “Characterization of SU-8 for Electrokinetic Microfluidic Applications,” Lab on a Chip, Vol. 5, pp. 888-896, (2005)
[20]Zeta potential measurement and theory of operation, Malvern Ltd., (2000).
[21]R. Venditti, X. Xuan, and D. Li, “Experimental Characterization of the Temperature Dependence of Zeta Potential and its Effect on Electroosmotic Flow Velocity in Microchannels,” Microfluidics and Nanofluidics, Vol. 2, pp. 493-499, (2006)
[22]A. Heeren, C. P. Luo, W. Henschel, M. Fleischer, D. P. Kern, “Manipulation of Micro- and Nano-particles by Electro-osmosis and Dielectrophoresis,” Microelectronic Engineering, Vol. 84 , pp. 1706-1709, (2007)
[23]T. Müller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, and G. Fuhr, “A 3-D Microelectrode System for Handling and Caging Single Cells and Particles,” Biosensors & Bioelectronics, Vol. 14, pp. 247–256, (1999).
[24]Th. Schnelle, T. Müller, G. Fuhr, “Trapping in AC Octode Field Cages,” J. Electrostat., Vol. 50, pp. 17–29, (2000).
[25]M. Dürr, J. Kentsch, T. Müller, T. Schnelle, and M. Stelzle, “Microdevices for Manipulation and Accumulation of Micro- and Nanoparticles by Dielectrophoresis,” Electrophoresis, Vol. 24, no. 4, pp. 722–731, (2003).
[26]S. Masuda, M. Washizu, T. Nanba, “Novel Method of Cell Fusion in Field Constriction Area in Fluid Integrated Circuit,” IEEE Transactions on Industry Applications, Vol. 25, No. 4, pp. 732-737, (1989).
[27]E. B. Cummings, A. K. Singh, “Dielectrophoretic Trapping Without Embedded Electrodes,” in SPIE: Conference on Microfluidic Devices and Systems III, (2000).
[28]E. B. Cummings, A. K. Singh, “Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results,” Analytical Chemistry, Vol. 75, pp. 4724-4731, (2003).
[29]B. H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, “Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators,” American Chemical, Vol. 76, pp. 1571-1579, (2004).
[30]B. H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, “Insulator-based Dielectrophoresis for the Selective Concentration and Separation of Live Bacteria in Water,” Electrophoresis, Vol. 25, pp. 1695-1704, (2004).
[31]B. H. Lapizco-Encinas, R. Davalos, B.A. Simmons, E.B. Cummings, Y. Fintschenko, “An Insulator-Based (Electrodeless) Dielectrophoretic Concentrator for Microbes in Water,” Vol. 62, pp. 317-326, (2005).
[32]Michael Pycraft Hughes, Nanoelectromechanics in Engineering and Biology, CRC Press, England, (2003).
[33]H. A. Pohl “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” J Applied Physics., Vol. 22(7), pp. 869-871, (1951).
[34]http://www.ibmm.informatics.bangor.ac.uk/
[35]戴健軒, “Automatic Biochip Platform for Cell Separation and Nucleus Collection ,” 國立成功大學工程科學系碩士論文, pp. 1–72, (2005).
[36]T. B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge, (1995).
[37]CFD-ACE(U) User Manual, Version 2002, CFD research corporation, (2004).
[38]CFD-ACE(U) Module Manual, Version 2002, CFD research corporation, (2004).
[39]王福軍, “計算流體動力學分析-CFD軟件原理與應用,” 清華大學出版社, (2004).
[40]林育德, “Development of a Plananr Dielectrophoretic System and Its Applications on Bioparticles,” 國立成功大學醫學工程學系碩士論文, pp. 1–90, (2002).
[41]張輔廷, “Multiple Electrodes Arrayed Dielectrophoretic Chip with Application on Micro-Bead Manipulation,” 國立成功大學機械工程學系碩士論文, pp. 1–105, (2007).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔