跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧瑨鋐
研究生(外文):Chin-Hung Lu
論文名稱:利用選擇性基因剔除小鼠模式,探討轉譯調控腫瘤蛋白(TCTP)在中樞神經系統所伴演之角色
論文名稱(外文):Generation and characterization of conditional TCTP mouse mutants in Nestin-cre-mediated derived central nervous system
指導教授:陳松鶴
指導教授(外文):Sung-Ho Chen
學位類別:碩士
校院名稱:慈濟大學
系所名稱:藥理暨毒理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:71
中文關鍵詞:轉譯調控腫瘤蛋白神經發育基因剔除
外文關鍵詞:TCTPCondition knockout miceNeurogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
轉譯調控腫瘤蛋白(TCTP)亦名組織胺釋放因子,在動物、植物、酵母菌及黴菌等生物皆發現TCTP大量地被表現,已知TCTP與調控生長、發育、蛋白質合成、紡垂體有絲分裂、細胞生長週期及組織胺和細胞激素釋放所引發之過敏反應有關,並具有拮抗細胞凋亡、影響鈣離子結合蛋白及穩定微小管之功能,同時也參與了腫瘤新生之角色。
過去研究證實,許多蛋白質與TCTP有交互關聯,如: Bcl-2家族中具有抗凋亡的Mcl-1,Bcl-xL及tubulin等。然而,增加或減少TCTP表現,則會影響正常生理功能,若全身性剔除TCTP蛋白質,則會導致胚胎時期的死亡。先前的研究發現,在帕金森式症及阿茲海默症的病人大腦,TCTP蛋白質表現量有明顯下降的趨勢,因此TCTP也參與了神經退化性疾病的發展。然而對於TCTP在中樞神經系統發育之角色至今仍鮮為人知。為了進一步探究TCTP對腦部發育之功能,我們利用選擇性基因剔除小鼠模式,將TCTP在胚胎大腦發育早期剔除。結果顯示,喪失TCTP會減少細胞新生、增加神經細胞凋亡、影響大腦發育、側腦室變大,最後導致新生鼠死亡。同時增加細胞凋亡蛋白質cleaved caspase 3表現量,減少拮抗細胞凋亡蛋白質Mcl-1, Bcl-xL, Hax-1及細胞週期蛋白質cyclin D2, cyclin E2的表現。此外在體外細胞實驗也觀察到,缺乏TCTP的神經前驅幹細胞,會降低轉錄因子OCT4表現量並干擾細胞分化及聚集。綜觀實驗結果,TCTP對於新生鼠的存活及大腦發育有著關鍵性的重要角色。
Translationally controlled tumor protein (TCTP) is a highly conserved protein that is linked to cell growth, survival, allergy, tumor reversion, and anti-apoptosis signaling pathway. Recently, decreased TCTP protein level was found in Alzheimer's disease, Down's syndrome and Parkinsonism patients. Hence, TCTP may be implicated in the progression of neurodegeneration. However, little is known regarding its role in central nervous system development. The aim of this study was to address the function of TCTP in the central nervous system. Conditional deletion of TCTP in neural progenitor cells mediated by Nestin-Cre was generated in mice, which resulted in early postnatal lethality, increased apoptotic cell death, impaired corticogenesis, and reduced proliferation of progenitor cells in the ventricular zone of cerebral cortex. Loss of TCTP in neuronal progenitors led to lost distribution of neurons in lateral ventricle and caused the decreased Mcl-1, Bcl-xL, Hax-1 and cyclin D2, cyclin E2 protein expressions. Therefore, TCTP may contribute to the regulation of apoptosis and G1 and S phase cell cycle in brain. Our results are the first to demonstrate the requirement of TCTP not only for neonatal survival but also brain development. Targeting on TCTP could become a novel strategy of gene therapy for studying neural pathophysiology.
目錄…………………………………………………………………………………3
縮寫表………………………………………………………………………………4
圖表目錄……………………………………………………………………………5
中文摘要……………………………………………………………………………6
英文摘要……………………………………………………………………………7
Introduction………………………………………………………………………...8
Materials and Methods……………………………………………………………14
Generation of TCTP conditional knockout mice and genotyping…………………14
Histological assay………………………………………………………………….14
Western blot analysis……………………………………………………………….15
Tissue preparation and immunohistochemistry…………………………………….16
TUNEL assay……………………………………………………………………….17
Cell proliferation assay……………………………………………………………..18
Primary neuronal cultures…………………………………………………………..20
Cortical progenitor cultures and Immunoflurosence……………………………….21
Cell survival assay………………………………………………………………….22
Results……………………………………………………………………………….23
Discussion…………………………………………………………………………....29
Conclusion…………………………………………………………………………...34
References………………………………………………………………………...…35
Figures and Legends…..…………………………………………….……..……….39
1.Gregorio, S.P., et al., Polymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: preliminary evidence. Psychiatry Res, 2009. 165(1-2): p. 1-9.
2.Arnold, S.E., Neurodevelopmental abnormalities in schizophrenia: insights from neuropathology. Dev Psychopathol, 1999. 11(3): p. 439-56.
3.Harwood, A.J., Neurodevelopment and mood stabilizers. Curr Mol Med, 2003. 3(5): p. 472-82.
4.Nadarajah, B., et al., Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci, 2001. 4(2): p. 143-50.
5.Tamamaki, N., et al., Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res, 2001. 41(1): p. 51-60.
6.Miyata, T., et al., Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron, 2001. 31(5): p. 727-41.
7.Kim, S.H., et al., Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer's disease. Neurosci Lett, 2001. 300(1): p. 41-4.
8.Yenofsky, R., et al., Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol Cell Biol, 1983. 3(7): p. 1197-203.
9.Thiele, H., et al., Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem, 2000. 267(17): p. 5473-81.
10.Gnanasekar, M., et al., Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol, 2002. 121(1): p. 107-18.
11.Bommer, U.A., et al., The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA, 2002. 8(4): p. 478-96.
12.Nielsen, H.V., et al., Identification of a basophil leukocyte interleukin-3-regulated protein that is identical to IgE-dependent histamine-releasing factor. Allergy, 1998. 53(7): p. 642-52.
13.Bonnet, C., et al., Identification and transcription control of fission yeast genes repressed by an ammonium starvation growth arrest. Yeast, 2000. 16(1): p. 23-33.
14.Xu, A., A.R. Bellamy, and J.A. Taylor, Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J, 1999. 342 Pt 3: p. 683-9.
15.Oikawa, K., et al., Dioxin stimulates synthesis and secretion of IgE-dependent histamine-releasing factor. Biochem Biophys Res Commun, 2002. 290(3): p. 984-7.
16.Sinha, P., et al., Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis, 2000. 21(14): p. 3048-57.
17.Gachet, Y., et al., The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci, 1999. 112 ( Pt 8): p. 1257-71.
18.Graidist, P., A. Phongdara, and K. Fujise, Antiapoptotic protein partners fortilin and MCL1 independently protect cells from 5-fluorouracil-induced cytotoxicity. J Biol Chem, 2004. 279(39): p. 40868-75.
19.Li, F., D. Zhang, and K. Fujise, Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem, 2001. 276(50): p. 47542-9.
20.Liu, H., et al., Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol, 2005. 25(8): p. 3117-26.
21.Tuynder, M., et al., Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci U S A, 2002. 99(23): p. 14976-81.
22.Yang, Y., et al., An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene, 2005. 24(30): p. 4778-88.
23.Zhang, D., et al., Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem, 2002. 277(40): p. 37430-8.
24.MacDonald, S.M., et al., Molecular identification of an IgE-dependent histamine-releasing factor. Science, 1995. 269(5224): p. 688-90.
25.Bommer, U.A. and B.J. Thiele, The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol, 2004. 36(3): p. 379-85.
26.Susini, L., et al., TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ, 2008. 15(8): p. 1211-20.
27.Rinkenberger, J.L., et al., Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev, 2000. 14(1): p. 23-7.
28.Motoyama, N., et al., Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science, 1995. 267(5203): p. 1506-10.
29.Chen, S.H., et al., A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell, 2007. 18(7): p. 2525-32.
30.Lin, J., et al., Directed differentiation of mouse cochlear neural progenitors in vitro. Am J Physiol Cell Physiol, 2009. 296(3): p. C441-52.
31.Yen, C.L., et al., Choline deficiency induces apoptosis in primary cultures of fetal neurons. FASEB J, 2001. 15(10): p. 1704-10.
32.Akhtar, R.S., J.M. Ness, and K.A. Roth, Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta, 2004. 1644(2-3): p. 189-203.
33.Arbour, N., et al., Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J Neurosci, 2008. 28(24): p. 6068-78.
34.Gilyarov, A.V., Nestin in central nervous system cells. Neurosci Behav Physiol, 2008. 38(2): p. 165-9.
35.Bacchi, C.E. and A.M. Gown, Detection of cell proliferation in tissue sections. Braz J Med Biol Res, 1993. 26(7): p. 677-87.
36.Beguin, P.C., et al., The phenotype and potential origin of nestin+ cardiac myocyte-like cells following infarction. J Appl Physiol, 2009. 107(4): p. 1241-8.
37.Yang, T., et al., MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol, 1996. 166(3): p. 523-36.
38.Suzuki, Y., et al., HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol, 1997. 158(6): p. 2736-44.
39.Zaehres, H., et al., High-efficiency RNA interference in human embryonic stem cells. Stem Cells, 2005. 23(3): p. 299-305.
40.Rodda, D.J., et al., Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem, 2005. 280(26): p. 24731-7.
41.Mizushima, N., et al., Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 2001. 152(4): p. 657-68.
42.DeChiara, T.M., et al., Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell, 1995. 83(2): p. 313-22.
43.Segre, J.A., C. Bauer, and E. Fuchs, Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet, 1999. 22(4): p. 356-60.
44.Blass, E.M. and M.H. Teicher, Suckling. Science, 1980. 210(4465): p. 15-22.
45.Westneat, M.W. and W.G. Hall, Ontogeny of feeding motor patterns in infant rats: an electromyographic analysis of suckling and chewing. Behav Neurosci, 1992. 106(3): p. 539-54.
46.Glover, J.C., "The developmental and functional logic of neuronal circuits": commentary on the Kavli Prize in Neuroscience. Neuroscience, 2009. 163(4): p. 977-84.
47. 曾子玲 (2003) Oroxylin A預防細菌內毒素所引發之心臟血管功能失調。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top