(35.175.212.130) 您好!臺灣時間:2021/05/15 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:徐菀佐
研究生(外文):Wan-Tso Hsu
論文名稱:鹽度對食蟹蛙蝌蚪成長發育及變態特徵的影響
論文名稱(外文):Effects of salinity on growth, development, and metamorphic traits of Rana cancrivora tadpoles
指導教授:關永才關永才引用關係
指導教授(外文):Yeong-Choy Kam
學位類別:碩士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:66
中文關鍵詞:鹽度蝌蚪食蟹蛙變態可塑性
外文關鍵詞:salinitytadpoleRana cancrivorametamorphosisplasticity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:825
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
鹽度對於兩棲類幼體而言是一種無可逃避的環境壓力,因此鹽度對於蝌蚪的成長發育以及變態特徵等較為長期的影響,以及蝌蚪是否以變態特徵可塑性來應對水池鹽度的變動,都是十分有趣且值得探討的議題。本研究目的是藉由目前已知最耐鹽的食蟹蛙蝌蚪,探討不同鹽度以及鹽度的轉變對兩棲類幼體存活、成長發育以及變態特徵的影響。實驗結果顯示,食蟹蛙蝌蚪在直接轉換鹽度的處理下最高可在16 ppt (parts per thousand)的半淡鹽水中存活超過48小時,具有相當高的耐鹽度。在不同鹽度的影響下,蝌蚪的成長與發育會隨著鹽度升高而同時減緩,當鹽度高達12 ppt時蝌蚪在達到變態前便全數死亡;在變態時間與體型方面,3、6與9 ppt處理下的變態特徵皆相似,顯示食蟹蛙蝌蚪還能夠忍受9 ppt的鹽度。在轉換鹽度的處理下,食蟹蛙蝌蚪表現出變態特徵的可塑性。若食蟹蛙幼體在蝌蚪期的早期遇到環境鹽度的增加,會減緩其成長與發育;若在蝌蚪期後期遇到環境鹽度增加,則會立即以最小體型變態;若遇到環境鹽度的壓力解除時,蝌蚪的成長與發育都會有可逆的現象,讓食蟹蛙蝌蚪能以最大的體型變態。綜合以上結果,本研究顯示食蟹蛙蝌蚪具有相當高的耐鹽度,成長與發育雖然會受鹽度影響而減緩,但仍然能夠以變態特徵的可塑性來應對那些鹽度變動的環境。
Salinity is an unavoidable environmental stress for amphibian larvae. This makes it interesting issues of how long-term exposure to salinity could affect tadpoles growth, development, and metamorphic traits, and whether metamorphic plasticity exists in tadpoles enable them to cope with fluctuating salinity. The purposes of this study were to evaluate long-term effects of salinity and changing salinity on growth, development, and metamorphic traits of tadpoles. Rana cancrivora tadpoles survived 16 ppt SW, indicating they are highly salt-tolerant. Tadpoles growth and development slowed as salinities increased, by 12 ppt SW, they did not metamorphose. Tadpoles reared in 3, 6, and 9 ppt SW metamorphosed at similar size and time, suggesting they were able to tolerate 9 ppt SW. Tadpoles reared in changing salinities showed metamorphic plasticity. Increasing salinities from low (i.e., 3 ppt) to high (i.e., 12 ppt) delayed growth and development of young tadpoles. For old tadpoles, increased salinity induced metamorphosis at a smaller size. When salinity reduced from 12 to 3 ppt, growth and development of tadpoles resumed, permitting tadpoles to attain maximum size at metamorphosis. Overall, results showed that Rana cancrivora tadpoles are highly salt-tolerant and exhibited metamorphic plasticity in response to fluctuating salinity.
中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………2
前言………………………………………………………………………3
文獻探討…………………………………………………………………6
材料與方法……………………………………………………………13
結果……………………………………………………………………20
討論……………………………………………………………………24
總結……………………………………………………………………36
參考文獻………………………………………………………………37
表目……………………………………………………………………48
圖目……………………………………………………………………49
表………………………………………………………………………50
圖………………………………………………………………………53
Alcala, A. C. 1962. Breeding behavior and early development of frogs of Negros, Philippine Islands. Copeia 4: 579-762.
Alvarado, R. H., Moody, A. 1970. Sodium and chloride transport in tadpoles of the bullfrog Rana catesbeiana. American Journal of Physiology 218: 1510-1516.
Altwegg, R. 2002. Predator-induced life-history plasticity under time constraints in pool frog. Ecology 83: 2542-2551.
Balinsky, J. B. 1981. Adaptation of nitrogen metabolism to hyperosmotic environment in amphibian. Journal of Experimental Zoology 215: 335-350.
Beachy, C. K., Surges, T. H., Reyes, M. 1999. Effects of developmental and growth history on metamorphosis in the gray treefrog, Hyla versicolor (amphibia, anura). Journal of Experimental Zoology 283: 522-530.
Beebee, T. J. C. 1985. Salt tolerances of natterjack toad (Bufo calamita) eggs and larvae from coastal and inland populations in Britain. Herpetological Journal 1: 14-16.
Berven, K. A. 1988. Factors affecting variation in reproductive traits within a population of wood frog (Rana sylvatica). Copeia 3: 605-615.
Berven, K. A. 1990. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71: 1599-1608.
Boonkoom, V., Alvarado, V. H. 1971. Adenosinetriphosphatase activity in gills of larval Rana catesbeiana. American Journal of Physiology 220: 1820-1824.
Casada, J. H., Nichols, J. R. 1986. Interrelationships among epidermal Na-K ATPase, developmental stage and length of Rana catesbeiana tadpoles. Comparative Biochemistry and Physiology A 85: 429-433.
Chinathamby, K., Reina, R. D., Bailey, P. C. E., Lees, B. K. 2006. Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii. Australian Journal of Zoology 54: 97-105.
Christy, M. T., Dickmam, C. R. 2002. Effects of salinity on tadpoles of the green and golden bell frog (Litoria aurea). Amphibia Reptilia 23: 1-11.
Denver, R. J. 1997. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. American zoologist 37: 172-184.
Denver, R. J., Mirhadi, N. Phillips, M. 1998. Adaptation plasticity in amphibian metamorphosis: respond of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology 79: 1859-1872.
Dent, J. N. 1988. Hormonal interaction in amphibian metamorphosis. American Zoologist 28: 297-308.
Dicker, S. E., Elltott, A. B. 1970. Water uptake by the crab-eating frog Rana cancrivora, as affected by osmotic gradients and by neurohypophysial hormones. Journal of Physiology 207: 119-132.
Diet, T. H., Alvarado, R. H. 1974. Na and Cl transport across gill chamber epithelium of Rana catesbeiana tadpoles. American Journal of Physiology 226: 764-770.
Dunson, W. A. 1977. Tolerance to high temperature and salinity by tadpoles of Philippine frog, Rana cancrivora. Copeia 2: 375-379.
Evans, D. H. 2008. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. American Journal of Physiology: regulatory, integrative and comparative physiology 295: 704-713.
Ely, C.A. 1944. Development of Bufo marinus larvae in dilute sea water. Copeia 1944: 256.
Gomez-Mestre, I., Tejedo, M. 2002. Geographic variation in asymmetric competition: a case study with two larval anuran species. Ecology 83: 2102-2111.
Gomez-Mestre, I., Tejedo, M. 2003. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57: 1889-1899.
Gomez-Mestre, I., Tejedo, M. 2005. Adaptation or exaptation? An experimental test of hypotheses on the origin of salinity tolerance in Bufo calamita. European Society for Evolutionary Biology 18: 847-855.
Gomez-Mestre, I., Tejedo, M., Ramayo, E., Estepa, J. 2004. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiological and Biochemical Zoology 77: 267-274.
Gordon, M. S., Schmidt-Nielsen, K., Kelly, H. M. 1961. Osmotic regulation in the crab-eating frog (Rana cancrivora). Journal of Experiment Biology 38: 659-678.
Gordon, M. S., Tucker, V. A. 1965. Osmotic regulation in the tadpoles of the crab-eating frog (Rana cancrivora). Journal of Experimental Biology 42: 437-445.
Gordon, M. S., Tucker, V. A. 1968. Further observations on the physiology of salinity adaptation in the crab-eating frog (Rana cancrivora). Journal of Experimental Biology 49: 185-193.
Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.
Haramura, T. 2007. Salinity tolerance of eggs of Buergeria japonica (Amphibia, Anura) inhabiting coastal area. Zoological Science. 24: 820-823.
Haramura, T. 2008. Experimental test of spawning site selection by Buergeria japonica (Anura: Rhacophoridae) in response to salinity level. Copeia 1: 64-67.
Hensley, F. R. 1993. Ontogenetic loss of phenotypic plasticity of age at metamorphosis in tadpoles. Ecology 74: 2405-2412.
Hwang, P. P. 1987. Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Orechromis mossambicus. Marine Biology 94: 643-649.
Hwang, P. P. 2009. Review: Ion uptake and acid secretion in zebrafish (Danio rerio). Journal of Experimental Biology 212: 1745-1752.
Hwang, P. P., Lee, T. H. 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comparative Biochemistry and Physiology 148: 479-497.
Jørgensen, C. B. 1997. Urea and amphibian water economy. Comparative Biochemistry and Physiology 117: 161-170.
Karraker, N. E. 2007. Are embryonic and larval green frogs (Rana calatans) insensitive to road deicing salt? Herpetological Conservation and Biology 2: 35-41.
Karraker, N. E., Gibbs, J. P., Vonesh, J. R. 2008. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecological Applications 18: 724-734.
Kupferberg, S. J. 1997. The role of larval diet in anuran metamorphosis. American Zoologist 37: 146-159.
Møbjerg, J., Larsen, E. H., Jespersen, A. 2000. Morphology of the kidney in larvae of Bufo virdis (Amphibia, Anura, Bufonidae). Journal of Morphology 245: 177-195.
Molles, M. C. 2002. Ecology: Concepts and applications. McGraw-Hill Inc. USA.
Moriya, T. 1983. The effect of temperature on the action of thyroid hormone and prolactin in larvae of the salamander Hynobius retardatus. General and Comparative Endocrinology 49: 1-7.
Muir, T. J., Costanzo, J. P., Lee, R. E. 2007. Osmotic and metabolic responses to dehydration and urea-loading in a dormant, terrestrially hibernating frog. Journal of Comparative Physiology 177: 917-926.
Newman, R. A. 1989. Developmental plasticity of Scaphiopus couchii tadpoles in an unpredictable environment. Ecology 70: 1775-1787.
Newman, R. A. 1992. Adaptation plasticity in amphibian metamorphosis. Bioscience 42: 671-678.
Newman, R. A. 1998. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level. Oecologia 115: 9-16.
Newman, R. A., Dunham, A. E. 1994. Size at metamorphosis and water loss in a desert anuran (Scaphiopus couchii). Copeia 1: 372-381.
Parsons, R. H., Lau, Y. T. 1976. Frog skin osmotic permeability-effect of acute temperature change in vivo and in vitro. Journal of Comparative Physiology 105: 207-217.
Rios-López, N. 2008. Effects of increased salinity on tadpoles of two anurans from a Caribbean coastal wetland in relation to their natural abundance. Amphibia-Reptilia 29: 7-18
Sanzo, D., Hecnar, S. J. 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environment Pollution 140: 247-256.
Schmidt-Nielden, K., Lee, P. 1962. Kidney function in the crab-eating frog (Rana cancrivora). Journal of Experimental Biology 39: 167-177.
Schmidt-Nielden, K. 1997. Animal Physiology: Adaptation and Environment. Cambridge University Press, New York. USA.
Semlitsch, R. D., Scott, D. E. Pechmann, J. H. K. 1988. Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69: 184-192.
Sherwood, L., Klandorf, H., Yancey, P. H. 2005. Animal Physiology: from Genes to Organisms. Thomson Brooks/ Cole, USA.
Shpun, S., Katz, U. 1999. Renal response of euryhaline toad (Bufo viridis) to acute immersion in tap water, NaCl, or urea solutions. Physiological and Biochemical Zoology 72: 227-237.
Smith, D. C. 1987. Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68: 344-350.
Smith, M. J., Schreiber, E. S. G., Sgroggie, M. P., Kohout, M., Ough, K., Potts, J., Lennie, R., Turnbull, D., Jin, C., Clancy, T. 2007. Associations between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinasation. Freshwater Biology 52: 75-84.
Smith-Gill, S. J., Berven, K. A. 1979. Predicting amphibian metamorphosis. American Naturalist 113: 563-585.
Squires, Z. E., Bailey, P. C. E., Reina, R. D., Wong, B. B. M. 2008. Environmental deterioration increases tadpole vulnerability to predation. Biology Letters 4: 392-394.
Uchiyama, M., Konno, N. 2006. Hormonal regulation of ion and water transport in anuran amphibians. General and Comparative Endocrinology 147: 54-61.
Uchiama, M., Murakami, T., Yoshizawa, H. 1990a. Notes on the development of crab-eating frog, Rana cancrivora. Zoological Science 7: 73-78.
Uchiyama, M., Ogasawara, T., Hirano, T., Kikuyama, S., Sasayama, Y., Oguro, C. 1990b. Serum and urine osmolyte concentrations during acclimation to various dilutions of seawater in the crab-eating frog Rana cancrivora. Zoological Science 7: 967-971.
Uchiama, M., Yoshizawa, H. 1992. Salinity tolerance and structure of external and internal gills in tadpoles of the crab-eating frog, Rana cancrivora. Cell Tissue Research 267: 35-44.
Viertel, B. 1999. Salt tolerance of Rana temporaria: spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia-Reptillia 20: 161-171.
Werner, E. E. 1986. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. American Naturalist 128: 319-341.
Wilbur, H. M., Collins, J. P. 1973. Ecological aspects of amphibian metamorphosis. Science 182: 1305-1314.
Wright, M. L., Proctor, K. L., Alves, C. D. 1999. Hormonal profile correlated with season, cold, and starvation in Rana catesbeiana (bullfrog) tadpoles. Comparative Biochemistry and Physiology 124: 109-116.
Wright, P., Anderson, P., Weng, L., Frick, N., Wong, W. P., Ip, Y. K. 2004. The crab-eating frog, Rana cancrivora, up-regulates hepatic carbamoyl phosphate synthetase I activity and tissue osmolyte levels in response to increasing salinity. Journal of Experimental Zoology 301: 559-568.
Wu, C. S., Kam, Y. C. 2009. Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zoological Science 26: 476-482.
巫奇勳。(2009)。半淡鹹水環境澤蛙蝌蚪的滲透調節、成長與變態之研究。東海大學生命科學系博士論文。
向高世、李鵬翔、楊懿如。2009。臺灣兩棲爬行類圖鑑。貓頭鷹出版社,台北。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top