( 您好!臺灣時間:2021/05/17 18:00
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):A Study of Relationship among Using Attitude, Degee of Assimilation and Performance after Implementing Supply Chain Management
外文關鍵詞:TAMTRAAssimilationChief beliefChief ParticipationSupply Chain Management
  • 被引用被引用:1
  • 點閱點閱:920
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0


本研究對象為公司使用供應鏈管理系統的員工,採用便利抽樣,本研究問卷共發出490份,回收189份,有效問卷180份,有效回收率為36 %。本研究發現認知易用性、認知有用性及主觀規範將正向影響使用態度,主管信念與參與將正向影響接納程度,接納程度將正向影響企業績效,使用態度將部份正向影響企業績效。
With technical development, introduceing advanced information system is helpful to raise the work efficiency in various industries. Information system can bring the organization benefit or not, one of the critical factors is the degrees of staff acception. If the information system can be widely used by staff, it will promote business competition advantage in the industries.

According to the literature review about implementing information system, this study finds that perceived usefulness, perceived ease and subjective norm maybe affect the using attitude, chief’s belief and participation maybe affect the degree of assimilation, and the degree of the assimilation maybe affect business performance. This study mainly takes the supply chain management (SCM) system as an example and verifies the model. The model includes construct of perceived usefulness, perceived ease, subjective norm, using attitude, chief’s belief, chief’s participation, the degree of assimilation and business performance. These constructs are mainly supported by theory of reasoned action and technology acceptance model.

This study adopts convenience sampling to send 490 questionaries to firms of inducing SCM. This data is collected by 180 valid questionnaires, and the retrieve rate is 36%. Employees of SCM in various and received 180 effective ones back. The results show that perceived usefulness, perceiced ease, and subjective norm will positive affect using attitude. Chief’s belief and participation will positive affect the degrees of assimilation. The degrees of assimilation will positive affect business performance. The using attitudes will partly positive affect business performance.
摘要 ii
Abstrct iii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
第三節 研究流程 4
第二章 文獻探討 5
第一節 資訊系統導入 5
第二節 供應鏈管理 8
第三節 科技接受相關理論 12
第四節 資訊系統導入後的接納程度與績效 18
第三章 研究方法 21
第一節 研究架構與假說 21
第二節 研究對象與抽樣設計 24
第三節 操作型定義 25
第四節 問卷衡量 29
第五節 資料分析方法 33
第四章 資料分析結果與討論 37
第一節 敘述統計分析 37
第二節 部分最小平方法衡量模式分析 44
第三節 整體關係模式分析 49
第四節 研究假說與實證結果討論 53
第五章結論與建議 55
第一節 研究結論 55
第二節 管理意涵 59
第三節 研究限制 60
第四節 未來研究方向 61
參考文獻 62
附錄: 研究問卷 69
2.葉焜煌(2001),「e 化供應鏈管理之績效指標探討」,資訊管理研究,第三卷,第二期,57-71。

1.Adams, (1972). Psychology of adjustment. New York: The Ronald Press Company.
2.Anderson, J. C. & Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-step Approach. Psychological Bulletin, 103(3), 411-423.
3.Ajzen, I. (1985). From intentions to actions: A Theory of Planned Behavior. In Action Control from Cognition to Behavior. Kuhl Julius and Bechmann Jurgen, 11-39.
4.Ajzen, I. (1989). Attitude, personality, & behavioral. Milton Keynes: Open University press
5.Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
6.Alam, A. (1996). Supply Chain Management. Journal of Strategic Management, 13, 80-86.
7.Bontis, N. (1998). Intellectual Capital: An Exploratory Study That Develops Measures and Models. Management Decision, 36(2), 63.
8.Boynton, A. C., & Zmud, R. W. (1987). IT Planning in 1990’s: Directions for Practice and Research. MIS Quarterly, March, 59-71.
9.Bagozzi, R. P., & Yi, Y. (1988). On the Evaluation of Structural Equation Models. Academy of Marketing Science Journal .16(1), 74-94.
10.Bollen, K. A. (1989). Structural equation modeling with latent variables. New York: John Wiley.
11.Beamon, B. M. (1999). Designing the Green Supply Chain. Logistics information Management, 12(4), 332-342.
12.Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-600.
13.Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (136-162). Newbury Park, CA: Sage.
14.Cooper, R. B., & Zmud, R.W. (1990). Information technology implementation research: A technological diffusion approach. Management Science, 36(2), 123-129.
15.Chatterjee, D., Pacini, C., & Sambamurthy, V. (2002). The shareholder wealth and trading volume effect of IT infrastructure investment. Journal of Management Information Systems, 19(2), 7-43
16.Chin, W. W. (1998). The Partial Least Squares Approach for Structural Equation Modeling. Modern Methods for Business Research, Lawrence Erlbaum Associates, 295-336.
17.Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1002.
18.Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
19.DeLone, W. & McLean, E. (1992). Information System Success: the quest for the Dependent Variable. Information Systems Research, 3(1), 60-95.
20.Dimaggio, P. J. & Powell, W. W. (1983).The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. Amarican Sociological Review, 48(2), 147-160.
21.Doll, W. J. & Torkzadeh, G. (1998). The Measurement of End-User Computing Satisfaction. MIS Quarterly, 12(2), 258-274.
22.Done, D. (1987). Essay Review:Information Technology. Long Range Planning, 20(1), 134-143.
23.Ellram, L. M. (1991). A Managerial Guideline for the Development and
Implement of Purchasing Partnerships. International Journal of
Purchasing and Materials Management, 27(3), 2-8.
24.Fishbein, M. & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley, Reading,
25.Fornell, C. & Larcker, D.F. (1981), Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388
26.Fornell, C. R. & Bookstein, F. L. (1982). Two Structural Equation Model: LISREL and PLS Applied to Consumer Exit-voice Theory. Journal of Marketing Research, 19(4), 440-452.
27.Fu, J. R. (2006). VisualPLS – Partial Least Square (PLS) Regression – An Enhanced GUI for Lvpls (PLS 1.8 PC) Version 1.04. National KaohsiungUniversity of Applied Sciences, Taiwan, ROC.
28.Fichman, R. G., & Kemerer, C. F. (1997). The assimilation of software process innovations: An organizational learning perspective. Management Science, 43(10), 1345-1363.
29.Liang, H., Nilesh, Saraf., & Qing Hu. (2007). Assimilation of Enterprise Systems: The Effect of Institutional Pressures and The Mediating Role of Top Management. MIS Quarterly, 31(1), 59-87.
30.Harrison, D. A., MyKytyn, P. Jr., & Riemenschneider, C. K. (1997). “Executive Decisions About Adoption of Information Technology in small Business : Theory and Empirical Tests”, Information Systems Research, 8(2), 171-195
31.Houliham, J. (1984). “Supply Chain Management”. Proceedings of the 19th International Technical Conference of the British Production and
Inventory Control Society, 101-110.
32.Hu, P. J., Chau, P. Y. K., Sheng, O. R. L. & Tam, K. Y.(1999). Examining the Technology Acceptance Model Using Physician Acceptance of Telemedicine Technology. Journal of Management Information Systems, 16(2), 91-112.
33.Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structural Equation Modeling, 6(1), 1-55.
34.Jarvenpaa, S. L. & Ives, B. (1991). Executive involvement and participation in the management of information technology. MIS Quarterly, 15(2), 205-228.
35.Jarvenpaa, S. L., Tractinsky, N., & Vitale, M. (2000). Consumer trust in an Internet store. Information Technology and Management, 1(1-2), 45-71.
36.Johansson, J. K., & Yip, G. S. (1994). Exploiting Globalization Potential: U.S. and Japanese Strategies. Strategic Management Journal, 15(8), 579-601.
37.Joeskog, K. G., & Sorbom, D. (1993). LISREL8.14: Structural equation modeling with the SIMPLIS command language. Chicago Scientific Softwave International.
38.Kalakota, R., & Winston, A. B. (1997). Frontiers of Electronic Commerce:A Manager’s Guide. Addison Wesley Longman, Inc.,
39.Kroenke, David. (1989). Management Information Systems; NY: McGraw-Hill; part.5.
40.Kalakota, R., & Robinson, M. (1999). E-Business: Roadmap for Success, 1st ed., U.S.A, Mary T. O’Brien.
41.Kettinger, W. J., Choong C., & Lee, J. W. (1994). Perceived Service Quality and User Satisfaction with the Information Services Function. Decision Sciences, 25(5/6), 737-766.
42.King, W. R., & Teo, T. S. H. (1996). Key Dimensions of Facilitators and Inhibitors for the Strategic Use of Information Technology. Journal of Management Information Systems, 12(4), 35-53.
43.Legris, P., J. Ingham, and P. Collerette. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204.
44.McFarlan, F. W., McKenney, J. L., & Pyburn, F. (1983). The Information Archipelago-Plotting a Course. Harvard Business Review, 61(1), 145-156.
45.Mahmood, M. A., & Soon, S. K. A. (1991). A comprehensive model for measuring the potential impact of information technology on organizational strategic variables. Decision Sciences, 22(4), 869-897.
46.McDonough, E. F. (2000). Investigation of Factors Contributing to the Success of Cross-Functional Teams. Journal of Product Innovation Management, 17(3), 221-235.
47.Nunnlly J.C. (1978). Psychometric theory. N.Y.: McGraw-Hill.
48.Neely, A. D., Gregory, M., & Platts, K. (1995). Performance Measurement Systems Design: A Literature Review and Research Agenda. International Journal of Operations & Production Management, 15(4), 80-116.
49.Nolan, R. L. (1979). Managing the crises in data processing. Harvard Business Review, 57(2), 115-126.
50.Olsen, M. (1982). The Rise and Decline of Nations, New Haven: Yale University Press.
51.Oliver, C. (1991). Strategic Responces To Institutional Processes. Academy of Management Review, 16(1), 145-179
52.Porter, M. E. & V. E. Millar. (1985). How information gives you competitive advantages. Harvard Business Review, 63(4) 149-160.
53.Rajagopal, P. (2002). An Innovation-Diffusion View of Implementation of Enterprise Resource Planning Systems and Development of a Research Model. Information and Management, 40(2), 87-114.
54.Scott, J. (1994). The measurement of information system effectiveness: evaluating ameasuring instrument. In Proceedings of the Fifteenth International Conference on Information System, Vancouver, BC, 111-128.
55.Scott, W. R. (1995). Institutions and Organizations. Thousand Oaks, CA Sage.
56.Supply Chain Council, SCOR Overview. (1998). www.supply-chain.org.
57.Sethi, V. and King W.R. (1994). Development of measures to assess the extent to which an information technology application provides competitive advantage. Management Science, 40(12), 1601-1627.
58.Swanson, E. B. (1994). Information Systems Innovation among Organizations. Management Science, 40(9), 1069-1092.
59.Segars, A. H., & Grover, V. (1993). Re-examining Ease of Use and Usefulness: A Confirmatory Factor Analysis. MIS Quarterly, 17(4), 517-527.
60.Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (1999). Designing and Managing the Supply Chain:Concepts, Strategies, and Cases.
61.Tapscott, D. (1999). Educating the Net Generation. Educational Leadership, 56 (5), 6-11.
62.Tornatzky, L., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, 29(1), 28-45.
63.Taylor, S., & Todd, P. A. (1995b). Understanding Information Technology Usage: a Test of Competing Models. Information Systems Research, 6(2), 144-176.
64.Taylor, S. & Todd, P. A. (1995a). Decomposition and Crossover Effects in the Theory of Planned Behavior: A Study of Consumer Adoption Intentions. International Journal of Research in Marketing, 12(2), 137-155.
65.Thompson, R. L., Higgins, C. A. & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 124-143.
66.Venkatraman, N., & Ramanunjam, V. (1986). Measurement of business performance in strategy research: A comparison of approaches. Academy of Management Review, 11(4), 801-814.
67.Vonderembse M. A., & Tracey, M. (1999). The impact of supplier selection criteria and supplier involvement on manufacturing performance. Journal of supply chain management, 35(3), 33-39.
68.Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204.
69.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-47.
70.Wold, H. (1982). Systems Under Indirect Observation Using PLS, In C. Fornell (ed.), A Second Generation of Multivariate Analysis, Praeger, 325-347.
71.Wixom, B. H., & Watson, H. J. (2001). An Empirical Investigation of the Factors Affecting Data Warehousing Success. MIS Quarterly, 25(1), 17-41.
72.Zmud, R. W., & Apple, M. E. (1989). Measuring Information Technology Infusion. unpublished manuscript.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top