(3.236.214.19) 您好!臺灣時間:2021/05/10 07:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:賴惠蘭
研究生(外文):Lai, Huei-Lan
論文名稱:黃金銀耳於糖尿病大鼠模式肌肉中降血糖機制之探討
論文名稱(外文):Studies on mechanism of anti-hyperglycemic activity of Tremella mesenterica retz.:Fr. in liver of diabetic rats
指導教授:盧錫祺盧錫祺引用關係
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:86
中文關鍵詞:肌肉黃金銀耳胰島素糖尿病
外文關鍵詞:muscleinsulinTremella mesenterica Retz.:Fr.Diabetes mellitus
相關次數:
  • 被引用被引用:4
  • 點閱點閱:623
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病是多種成因之代謝異常,由於潛藏的胰島素阻抗問題之未病群遠超過發病人數,如能於產生無可挽回的器官病變前有效改善高血糖狀態,將能大幅降低未來醫療照護負擔。於體內代謝血糖方面,肌肉為是周邊組織中最主要攝取葡萄糖的器官且也能感應體內血糖濃度的變化來消耗葡萄糖。關於血糖恆定之調控上,除了藉由胰島素傳訊外,由脂肪細胞所分泌的多種脂泌素如脂聯素(adipo- nectin),亦具有調節胰島素敏感性的作用。黃金銀耳,是一種金黃色膠狀樣的可食用蘑菇,其子實體包含20%以上的酸性多醣體。於先前研究結果顯示,黃金銀耳可有效提升胰島素敏感度,且達到降血糖效用。推測黃金銀耳可能經由更有效率的胰島素傳訊或是經由其他傳訊,提高周邊組織的胰島素敏感性,達到血糖調降之目的。為了解黃金銀耳調控血糖的機制,本研究深入探討餵食黃金銀耳是否可活化胰島素與脂聯素傳訊路徑之傳訊分子。研究中使用酵素免疫連結法分析血清中脂聯素濃度,並利用反轉錄同步定量聚合酶連鎖反應於轉錄層次檢測基因表現量,另以西方轉漬法分析蛋白質之表現量。本研究中初步證實,餵食黃金銀耳能有效提高血清中脂聯素的分泌量,亦能提升骨骼肌中兩型脂聯素受體基因轉錄效率,以及增加脂聯素傳訊下游之AMPK蛋白質表現量,推論黃金銀耳可能透過增強骨骼肌中脂聯素傳訊進而調控血糖與提高胰島素敏感性。黃金銀耳之餵食雖對骨骼肌中胰島素受體的mRNA基因表現沒有影響,但於蛋白質表現上有顯著的提升;肌肉中第二型胰島素受體基質在餵食後雖沒有影響,但第一型胰島素受體基質無論於基因表現或蛋白質表現量上均受到提升;同時,Akt蛋白質表現量亦顯著的增加。另外經黃金銀耳餵食後,第四型葡萄糖轉運蛋白基因轉錄效率與蛋白質表現均提高。推測黃金銀耳可能藉由增強肌肉細胞內胰島素與脂聯素傳訊,協同提高GLUT4表現與提高肌肉組織之胰島素敏感性,改善糖尿病大鼠模式中葡萄糖之代謝調控。
Diabetes mellitus is the metabolic abnormality resulted from multiple causes, and the incidence of potent patients with insulin resistance is far more than that of the dia- betes patients. It would be beneficial in reducing the cost of future medical care by improving the status of high blood sugar before irreversible organ lesions. Skeletal muscle is a major tissue for glucose consumption, and glucose uptake by the regula- tion of insulin. The regulation of blood sugar, in addition to insulin signaling, is also mediated by adiponectin, an adipokine secreted by adipocytes, and here by improve insulin sensitivity. Tremella mesenterica, a yellow brain jelly mushroom containing up to 20% of polysaccharide glucuronoxylomannan (GXM) in the fruiting bodies, is a edible, and medicinal mushroom. In the previous studies showed that T. mesenterica can effectively enhance the insulin sensitivity, and ameliorate hyperglycemia. It is deduced that T. mesenterica may improve insulin sensitivity through more effective insulin and adiponectin signalings, and thereby lead to a hypoglycermic effect. To clarify whether T. mesenterica could activate insulin and adiponectin signaling in the muscle, molecules involved in these two signalings pathway were investigated. Our results demonstrated that T. mesenterica increased the circulating adiponectin contents, the AdipoR1/AdipoR2 mRNA expression, and the AMPK protein expression. Adipo- nectin signaling might be enhanced in the muscle with T. mesenterica gavage. On the other hand, T. mesenterica enhanced the insulin receptor protein expression, improved IRS-1 mRNA expression and protein expression, increased the Akt protein expression, and enhanced insulin signaling in the muscle. In conclusion, the antidiabetic activity of T. mesenterica at least in part, is contributed by promoting GLUT4 expression and improving insulin sensitivity by strengthening insulin and adiponectin signaling.
摘要 1
英文摘要 2
一、前言 3
1-1黃金銀耳與其生理功效 3
1-2糖尿病 4
1-3肌肉組織與血糖恆定 6
1-4胰島素傳訊 6
1-5脂聯素傳訊 10
1-6葡萄糖轉運 15
1-7前驅實驗結果 16
1-8研究目的 18
二、材料與方法 20
2-1動物實驗 20
2-2黃金銀耳子實體、人工菌株發酵菌絲體與純化多醣體製備 21
2-3抽取RNA 21
2-4反轉錄 21
2-5同步定量聚合酶連鎖反應 22
2-6脂聯素酵素免疫連結分析 24
2-7萃取肌肉細胞蛋白質 24
2-8蛋白質定量 25
2-9西方轉漬法 25
2-10統計分析 28
三、結果 29
3-1血清中脂聯素濃度 29
3-2肌肉中脂聯素受體 (AdipoR1、AdipoR2) mRNA相對表現量 31
3-3肌肉中胰島素受體 (IR) 與胰島素受體基質 (IRS-1、IRS-2) mRNA相對表現量 34
3-4肌肉中胰島素傳訊分子的蛋白質相對表現量 38
3-5 肌肉中AMP-activated protein kinase (AMPK) 蛋白質相對表現量 44
3-6肌肉中葡萄糖轉運蛋白 (GLUT4) mRNA與蛋白質相對表現量 46
四、討論 50
4-1胰島素傳訊 50
4-2脂聯素傳訊 52
4-3總論 54
4-4未來展望 57
附錄一、動物試驗的生化分析數據 58
附錄二、實驗中使用的化合物 61
附錄三、西方轉漬法結果底片 63
參考文獻 74
1.Abe H, Yamada N, Kamata K, Kuwaki T, Shimada M, Osuga J, Shionoiri F, Yahagi N, Kadowaki T, Tamemoto H, Ishibashi S, Yazaki Y, Makuuchi M. 1998. Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J. Clin. Invest. 101: 1784-1788.
2.Ablooglu AJ, Kohanski RA. 2001. Activation of the insulin receptor’s kinase domain changes the rate-determining step of substrate phosphorylation. Biochemistry. 40: 504-513.
3.Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, José PA, Taylor SI, Westphal H. 1996. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12: 106-109.
4.Amos AF, McCarty DJ, Zimmet P. 1997. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med. 14: S1-S85.
5.Araki E, Lipes MA, Patti ME, Brüning JC, Haag B 3rd, Johnson RS, Kahn CR. 1994. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature. 372: 186-190.
6.Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. 1999. Paradoxical decrease of an adiposespecific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257: 79-83.
7.Baron V, Kaliman P, Gautier N, Van Obberghen E. 1992. The insulin receptor activation process involves localized conformational changes. J. Biol. Chem. 267: 23290-23294.
8.Bate KL, Jerums G. 2003. 3: Preventing complications of diabetes. Med. J. Aust. 179: 498-503.
9.Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. 2001. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7: 947-953.
10.Biddinger SB, Kahn CR. 2006. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68: 123-158.
11.Bobbert T, Rochlitz H, Wegewitz U, Akpulat S, Mai K, Weickert MO, Möhlig M, Pfeiffer AF, Spranger J. 2005. Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes. 54: 2712-2719.
12.Brownlee M. 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 54: 1615-1625.
13.Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, Goodyear LJ, Kahn CR. 1998. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 2: 559-569.
14.Bugianesi E, McCullough AJ, Marchesini G. 2005. Insulin Resistance: A Metabolic Pathway to Chronic Liver Disease. Hepatology. 42: 987-1000.
15.Carling, D. 2004. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci. 29: 18-24.
16.Chelliah A, Burge MR. 2004. Hypoglycaemia in elderly patients with diabetes mellitus: causes and strategies for prevention. Drugs Aging. 21: 511-30.
17.Chen YW, Lo HC, Yang JG, Chien CH, Lee SH, Tseng CY, Huang BM. 2006. The regulatory mechanism of Tremella mesenterica on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 79: 584-90.
18.Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. 2001a. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose. J Biol Chem. 276: 38349-38352.
19.Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. 2001b. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 292: 1728-31.
20.De Baets S, Du Laing S, Francois C, Vandamme EJ. 2002. Optimization of exopolysaccharide production by Tremella mesenterica NRRL Y-6158 through implementation of fed-batch fermentation. J Industr Microbiol Biotechnol. 29: 181-184.
21.Delaigle AM, Jonas JC, Bauche IB, Cornu O, Brichard SM. 2004. Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology. 145: 5589-5597.
22.Douen AG, Ramlal T, Rastogi S, Bilan PJ, Cartee GD, Vranic M, Holloszy JO, Klip A. 1990. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem. 265: 13427-13430.
23.Diez JJ, Iglesias P. 2003. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 148: 293-300.
24.Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, Lee VM, Szabolcs M, de Jong R, Oltersdorf T, Ludwig T, Efstratiadis A, Birnbaum MJ. 2005. Role for Akt3/protein kinase Bγ in attainment of normal brain size. Mol. Cell. Biol. 25: 1869-78.
25.Fantin VR, Lavan BE, Wang Q, Jenkins NA, Gilbert DJ, Copeland NG, Keller SR, Lienhard GE. 1999. Cloning, tissue expression, and chromosomal location of the mouse insulin receptor substrate 4 gene. Endocrinology. 140: 1329-1337.
26.Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. 2001. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA. 98: 2005-2010.
27.Furtado, L.M., Somwar, R., Sweeney, G., Niu, W., and Klip, A. 2002. Activation of the glucose transporter GLUT4 by insulin. Biochem Cell Biol. 80: 569-578.
28.Fu Y, Luo N, Klein RL, Garvey WT. 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 46: 1369-1379.
29.Higaki Y, Wojtaszewski JF, Hirshman MF, Withers DJ, Towery H, White MF, Goodyear LJ. 1999. Insulin receptor substrate-2 is not necessary for insulin- and exercise-stimulated glucose transport in skeletal muscle. J Biol Chem. 274: 20791-20795.
30.Hu E, Liang P, Spiegelman BM. 1996. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271: 10697-10703.
31.Huang C, Thirone AC, Huang X, Klip A. 2005. Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J Biol Chem. 280: 19426-19435.
32.Huang S, Czech MP. 2007. The GLUT4 glucose transporter. Cell Metab. 5: 237-252.
33.Hug C, Lodish HF. 2005. The role of the adipocyte hormone adiponectin in cardiovascular disease. Curr. Opin. Pharmacol. 5: 129-134.
34.Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6: 279-284.
35.Inoue G, Cheatham B, Emkey R, Kahn CR. 1998. Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J. Biol. Chem. 273: 11548-11555.
36.Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schürmann A, Seino S, Thorens B. 2002. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am. J. Physiol. Endocrinol. Metab. 282: E974-E976.
37.Kaburagi Y, Satoh S, Yamamoto-Honda R, Ito T, Ueki K, Akanuma Y, Sekihara H, Kimura S, Kadowaki T. 2001. Insulin-independent and wortmannin-resistant targeting of IRS-3 to the plasma membrane via its pleckstrin homology domain mediates a different interaction with the insulin receptor from that of IRS-1. Diabetologia. 44: 992-1004.
38.Kabuta T, Hakuno F, Asano T, Takahashi S. 2002. Insulin receptor substrate-3 functions as transcriptional activator in the nucleus. J. Biol. Chem. 277: 6846-51.
39.Kadowaki T, Yamauchi T. 2005. Adiponectin and adiponectin receptors. Endocr Rev 26: 439-451.
40.Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116: 1784-1792.
41.Kahn SE. 2003. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 46: 3-19.
42.Kasuga M, Karlsson FA, Kahn CR. 1982. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science. 215: 185-187.
43.Kershaw EE, Flier JS. 2004. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 89: 2548-2556.
44.Khondkar P, Aidoo KE, Tester RF. 2002. Sugar profile of extracellular polysaccharides from different Tremella species. Int J Food Microbiol. 79: 121-129.
45.Kiho T, Morimoto H, Sakushima M, Usui S, Ukai S. 1995. Polysaccharides in fungi. XXXV. Anti diabetic activity of an acidic polysaccharide from the fruiting bodies of Tremella aurantia. Biol Pharm Bull. 18: 1627-1629.
46.Kiho T, Merimoto H, Kobayashi T, Usiu S, Ukai S, Aizawa K, Inakuma T. 2000. Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Biosci Biotechnol Biochem. 64: 417-419.
47.Kiho T, Kochi M, Usui S, Hirano K, Aizawa K, Inakuma T. 2001. Antidiabetic effect of an acidic polysaccharide (TAP) from Tremalla aurantia and its degradation product (TAP-H). Biol Pharm Bull. 24: 1400-1403.
48.Kim JK, Zisman A, Fillmore JJ, Peroni OD, Kotani K, Perret P, Zong H, Dong J, Kahn CR, Kahn BB, Shulman GI. 2001. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest. 108: 153-160.
49.King H, Aubert RE, Herman WH. 1998. Global burden of diabetes, 1995-2025. Prevalence, numerical estimates and projections. Diabetes Care. 21: 1414-1431.
50.Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, Tsubamoto Y, Komeda K, Nakano R, Miki H, Satoh S, Sekihara H, Sciacchitano S, Lesniak M, Aizawa S, Nagai R, Kimura S, Akanuma Y, Taylor SI, Kadowaki T. 2000. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia. Diabetes. 49: 1880-1889.
51.Larkin M. 2001. Diet and exercise delay onset of type 2 diabetes, say US experts. Lancet 358: 565.
52.Lassak A, Del Valle L, Peruzzi F, Wang JY, Enam S, Croul S, Khalili K, Reiss K. 2002. Insulin receptor substrate 1 translocation to the nucleus by the human JC virus T-antigen. J. Biol. Chem. 277: 17231-17238.
53.Leturque A, Loizeau M, Vaulont S, Salminen M, and Girard J. 1996. Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes. 45: 23–27.
54.Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
55.Lo HC, Chen YW, Chien CH, Tseng CY, Kuo YM, Huang BM. 2005. Effects of Tremella mesenterica on steroidogenesis in MA-10 mouse Leydig tumor cells. Arch Androl. 51: 285-294.
56.Lo HC, Tsai FA, Wasser SP, Yang JG, Huang BM. 2006. Effects of ingested fruiting bodies, submerged culture biomass, and acidic polysaccharide glucuronoxylomannan of Tremella mesenterica Retz.:Fr. on glycemic responses in normal and diabetic rats. Life Sci. 78: 1957-1966.
57.Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 2000. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 49: 896-903.
58.Long YC, Zierath JR. 2006. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest. 116: 1776-1783.
59. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. 2002. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 8: 731-7.
60.Martin BC, Wjkabrsjk CR. 1992. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet. 340: 925-929.
61.Matsuzawa Y. 2006. The metabolic syndrome and adipocytokines. FEBS Lett. 580: 2917-2921.
62.Milan G, Granzotto M, Scarda A, Calcagno A, Pagano C, Federspil G, Vettor R. 2002. Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes. Res. 10: 1095-1103.
63.Minokoshi Y, Kahn CR, Kahn BB. 2003. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem. 278: 33609-33612.
64.Nakae J, Kitamura T, Silver DL, Accili D. 2001. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108: 1359-1367.
65.Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE. 2004. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279: 12152-12162.
66.Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BV. 1997. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. Diabetes Care. 204: 537-544.
67.Patti ME, Kahn CR. 1998. The insulin receptor—a critical link in glucose homeostasis and insulin action. J. Basic Clin. Physiol. Pharmacol. 9: 89-109.
68.Pessin JE, Saltiel AR. 2000. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. 106: 165-169.
69.Piechaczyk M, Blanchard JM, Marty L, Dani C, Panabieres F, El Sabouty S, Fort P, Jeanteur P. 1984. Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Res. 12: 6951-6963.
70.Piñeiro R, Iglesias MJ, Gallego R, Raghay K, Eiras S, Rubio J, Diéguez C, Gualillo O, González-Juanatey JR, Lago F. 2005. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett. 579: 5163-5169.
71.Previs SF, Withers DJ, Ren JM, White MF, Shulman GI. 2000. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J Biol Chem. 275: 38990-38994.
72.Radermecker RP, Jandrain B, Paquot N, Philips JC, Contessi E, Lavigne M, Rinaldi AM, Scheen AJ. 2003. [Prevention of hypoglycemia in patients with type 1 diabetes]. Rev. Med. Liege. 58: 361-368.
73.Reaven GM. 1995. The fourth Musketeer—from Alexandre Dumas to Claude Bernard. Diabetologia. 38: 3-13.
74.Reshetnikov SV, Wasser SP, Nevo E, Duckman I, Tsukor K. 2000. Medicinal value of the genus Tremella Pers. (Heterobasidiomycetes). Int J Med Mushr. 2: 169-193.
75.Ryder JW, Chibalin AV, Zierath JR. 2001. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol Scand. 171: 249-257.
76.Saltiel AR, Khan CR. 2001. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 414: 799-806.
77.Schinner S, Scherbaum WA, Bornstein SR, Barthel A. 2005. Molecular mechanisms of insulin resistance. Diabet Med. 22: 674-682.
78.Scherer PE. 2006. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes. 55: 1537-1545.
79.Sciacchitano S, Taylor SI. 1997. Cloning, tissue expression, and chromosomal localization of the mouse IRS-3 gene. Endocrinology. 138:4931-4940.
80.Spiegelman BM, Flier JS. 1996. Adipogenesis and obesity: rounding out the big picture. Cell. 87: 377-389.
81.Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, et al. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 372: 182-186.
82.Taniguchi CM, Ueki K, Kahn R. 2005. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest. 115: 718-727.
83.Taniguchi CM, Emanuelli B, Kahn CR. 2006. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 7: 85-96.
84.Thirone AC, Huang C, Klip A. 2006. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab. 17: 72-78.
85.Thong FS, Dugani CB, Klip A. 2005. Turning signals on and off: GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda). 20: 271-284.
86.Tsao TS, Burcelin R, Katz EB, Huang L, Charron MJ. 1996. Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes. 45: 28-36.
87.Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, Kamon J, Kobayashi M, Suzuki R, Hara K, Kubota N, Terauchi Y, Froguel P, Nakae J, Kasuga M, Accili D, Tobe K, Ueki K, Nagai R, Kadowaki T. 2004. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 279: 30817-30822.
88.Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M; Finnish Diabetes Prevention Study Group. 2001. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344: 1343-1350.
89.Vinogradov E, Petersen BO, Duus JO, Wasser S. 2004. The structure of the glucuronoxylomannan produced by culinary-medicinal yellow brain mushroom (Tremella mesenterica Ritz.:Fr., Heterobasidiomycetes) grown as one cell biomass in submerged culture. Carbohydr Res. 339: 1483-1489.
90.Weintrob N, Schechter A, Benzaquen H, Shalitin S, Lilos P, Galatzer A, Phillip M. 2004. Glycemic patterns detected by continuous subcutaneous glucose sensing in children and adolescents with type 1 diabetes mellitus treated by multiple daily injections vs continuous subcutaneous insulin infusion. Arch. Pediatr. Adolesc. Med. 158: 677-684.
91.White MF. 1998. The insulin signalling system: a network of docking proteins that mediate insulin action. Mol and Cellular Biochem. 182: 3-11.
92.White MF. 2002. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 283: E413-422.
93.Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. 1998. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 391: 900-904.
94.Wolf AM, Wolf D, Avila MA, Moschen AR, Berasain C, Enrich B, Rumpold H, Tilg H. 2006. Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J. Hepatol. 44: 537-543.
95.Yamauchi T, Tobe K, Tamemoto H, Ueki K, Kaburagi Y, Yamamoto-Honda R, Takahashi Y, Yoshizawa F, Aizawa S, Akanuma Y, Sonenberg N, Yazaki Y, Kadowaki T. 1996. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol. 16: 3074-3084.
96.Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 7: 941-946.
97.Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 8: 1288-1295.
98.Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. 2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 423: 762-769.
99.Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T, Ito Y, Kamon J, Tsuchida A, Kumagai K, Kozono H, Hada Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Awazawa M, Takamoto I, Froguel P, Hara K, Tobe K, Nagai R, Ueki K, Kadowaki T.2007. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 13: 332-339.
100.Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. 2001. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J. Clin. Endocrinol. Metab. 86: 3815-3819.
101.Zierath JR, Krook A, Wallberg-Henriksson H. 2000. Insulin action and insulin resistance in human skeletal muscle. Diabetologia. 43: 821-835.
102.Zierath JR, Wallberg-Henriksson H. 2002. From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients. Ann. NY Acad. Sci. 967: 120-134.
103.Zierath JR, Kawano Y. 2003. The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Pract Res Clin Endocrinol Metab. 17: 385-398.
104.Zimmet PZ. 1999. Diabetes epidemiology as a trigger to diabetes research. Diabetologia. 42: 499-518.
105.Zimmet P. 2000. Globalization, coca-colonization and the chronic disease epidemic: can the doomsday scenario be averted? J. Intern. Med. 247: 301-310.
106.Zimmet P, Alberti KG, Shaw J. 2001. Global and societal implications of the diabetes epidemic. Nature. 414: 782-787.
107.Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB. 2000. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med. 6: 924-928.
108.國立自然科學博物館,自然與人文數位博物館
109.劉波 中國藥用真菌 出版日期:1978年05月第1版
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔