(18.204.227.34) 您好!臺灣時間:2021/05/19 07:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳麗娟
研究生(外文):Li-Jiuan
論文名稱:鵝蛋黃蛋白質水解物抗氧化性之探討
論文名稱(外文):Studies on Antioxidative Activities of Hydrolysates from Goose Egg Yolk Protein
指導教授:郭俊欽郭俊欽引用關係江文德江文德引用關係
指導教授(外文):Chun-Chin KuoWen-Dee Chiang
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:131
中文關鍵詞:鵝蛋黃蛋白質(GEYP)酵素抗氧化力超濾膜過濾胺基酸組成。
外文關鍵詞:Goose egg yolk proteinEnzymeAntioxidative activitiesUltrafiltration membraneAmino acid composition.
相關次數:
  • 被引用被引用:4
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:119
  • 收藏至我的研究室書目清單書目收藏:0
本研究以7.5 % ( w/w of protein ) 之Alcalase 、Flavourzyme 及二種混合 (1:1) 之酵素 (Mix) 分別對8 % 鵝蛋黃蛋白質 (goose egg yolk protein; GEYP) 進行水解,並依水解時間製備0、0.5、4、8、12h水解物以探討水解時間 (hydrolysis time; HT) 與酵素種類對GEYP水解物之水解率 (degree of hydrolysis; DH)、產率及抗氧化特性之影響。結果顯示,三組酵素水解物之DH和產率皆隨HT增加而上升,其中以混合酵素水解GEYP12h所得之水解物 (MH12h) 其DH最高可達56.7 %,其次為Flavourzyme 的36.7 %。就抗氧化性而言,MH12h具最佳的α, α-diphenyl-β-picrylhydrazyl (DPPH)自由基清除能力、氫氧自由基清除能力、還原力及亞鐵離子螯合力。將MH12h依序經30、10、1及0.15 kDa分子量限值濾膜進行區分,分別可得30、10、1與0.15 kDa濃縮液與0.15 kDa濾液,30 kDa 濃縮液具最佳的亞鐵離子螯合力與DPPH自由基清除能力,此區分物之Tyr與Ser含量顯著增加,這可能與其抗氧化力之提升有關。1 kDa濃縮液具有最佳的還原力與清除氫氧自由基的能力,可能與胺基酸Pro含量增加有關。上述兩區分物之分子量主要小於1,000 Da,推測此分子量之胜肽提供較佳的抗氧化力。由此可知MH12h有良好的抗氧化力,未來具開發為天然抗氧化物質應用於食品系統中之潛力。
The purpose of this study was to investigate the effects of hydrolysis time (HT) (0, 0.5, 4, 8, 12 h) and enzyme types (Alcalase, Flavourzyme, and Mixed enzyme Alcalase + Flavourzyme) on degree of hydrolysis (DH), yield, and antioxidant activities during hydrolysis of 8 % goose egg yolk protein (GEYP). Each enzymes concentration was 7.5% (w/w of protein). Both DH and yield of the hydrolysates increased with increase of HT. The hydrolysate obtained from hydrolysis of GEYP with mixed enzyme for 12h (MH12h) had the highest DH of 56.7 % than Flavourzyme’s 36.7 %. For antioxidative activities of the hydrolysates, MH12h had the strongest α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity. MH12h were further factionated by ultrafiltration membranes with 30, 10, 1, and 0.15 kDa molecular weight cut-off (MWCO) sequentially to obtained 30, 10, 1, 0.15 kDa concentrate and 0.15 kDa permeate, respectively. The result showed 30 kDa concentrate had higher ferrous ion chelating activity and DPPH radical scavenging activity than other fractions. For the amino acid composition, 30 kDa concentrate had higher Tyr and Ser. 1 kDa concentrate had higher reducing power and hydroxyl radical scavenging activity than others. It might be due to its higher Pro content. The molecular weight profile of 30 kDa and 1 kDa concentrate had mainly 1,000 Da. Therefore, MH12h had stronger antioxidative activity , and may serve as potential nature antioxidative materials for food system in the future.
目錄 ……………………………………………………………………I
圖次 ……………………………………………………………………Ⅴ
表次 ……………………………………………………………………Ⅶ
附錄次…………………………………………………………………..Ⅷ
中文摘要………………………………………………………………..Ⅸ
英文摘要……………………………………………………………….ⅩⅠ
壹、 前言……………..……………………………………………...…1
貳、 文獻回顧……………………………………………………...…..3
一、 國內養鵝業之生產情形…………………………………....…..3
(一) 白羅曼鵝之簡介………………………………….….……........4
(二) 鵝蛋之特性與組成……………………..…………….……...…5
(三) 蛋黃之組成及應用……………………..…………………...….5
二、 脂質氧化作用……………………….…………………....……11
(一) 脂質自氧化作用……..………….………………….……...…..11
(二) 脂質氧化與疾病……………...…...………………………..…15
三、 自由基與活性氧..…..…….………………..……….…………17
(一) 自由基與活性氧的種類…………...……………...…….…….17
(二) 自由基與活性氧的來源………………….…………......…….18
(三) 自由基與活性氧對生物體的影響……...………..…..…….....20
四、 抗氧化機制與抗氧化物質……………………………………20
五、 影響胜肽抗氧化活性之因子…………………………………24
六、 蛋白質之水解作用……………………………………………31
參、 材料與方法………………………………….…………....……..41
一、 試驗材料………………………………………………………41
二、 實驗設計……………………..………………………………..41
三、 鵝蛋黃蛋白質水解物之製備…………………………………43
(一) 粗鵝蛋黃蛋白質之製備………………..……..........….........…43
(二) 實驗酵素……………………………………..….……....…......45
(三) 鵝蛋黃蛋白質酵素水解之條件篩選………………...…..…....45
(四) 鵝蛋黃蛋白質水解物之製備…………………….…………....46
(五) 基本成分分析……………………….….…..……………..…...46
(六) GEYP水解物之水解率測定……………….……..........…...50
(七) 產率之測定…………………...………….………….….…..….53
四、 抗氧化能力之測定………………………………..…………..53
五、 磷含量之測定…………………………………………………58
六、 膜反應系統之區分作用…………………………........……....59
七、 分子量分佈分析……………………………………..…….….60
八、 胺基酸組成分析………………………………….….……......63
九、 統計分析…………………………………..…………...……...67
肆、 結果與討論……….…………………………………...………...68
一、 GEYP基本成分分析………………………………………….68
二、 GEYP水解條件探討………………………………………….70
(一) 較適基質濃度之探討……………………………….............…70
(二) 較適酵素濃度之探討………………………….….........…...…72
(三) 在相同水解條件下不同酵素對於水解率之影響及其pH值之變化………………75
三、 GEYP抗氧化性水解物的製備條件及其特性之比較…….....78
(一) GEYP水解物產率之比較…………………....……...…...……79
(二) GEYP水解物抗氧化能力之比較………...….…..……………82
1. α, α-diphenyl-β-picrylhydrazyl (DPPH) 自由基清除能力之比較……82
2. 亞鐵離子螯合能力之比較…………………………..…...…...85
3. 還原力之比較…………………………………….…………...89
4. 清除氫氧自由基能力之比較……………………..…...……...94
四、 探討MH12h經不同分子量限值區分所得之區分物對抗氧化力的影響………………………………………………..…………97
(一) GEYP、MH12h及其區分物之分子量分佈…………………...97
(二) MH12h區分物之還原力、金屬螯合力、氫氧自由基與DPPH自由基清除能力……99
(三) GEYP最具抗氧化力區分物之胺基酸組成……...……..…....102
伍、 結論…………………………………………………….…….....106
陸、 參考文獻………………………………………………...….…..107
柒、 附錄……………………………………………………..............125
圖次
圖一、脂質自氧化的反應階段………………………………………...12
圖二、不飽和脂肪酸自氧化反應中最初的氫過氧化物的形成………14
圖三、脂質氧化反應之最終產物………………………………………16
圖四、氧分子之氧化還原及激發狀態…………………………………19
圖五、電子捕捉劑所捕捉到的蛋白質之側鏈自由基之結構…………28
圖六、甲硫胺酸側鏈還原脂質氫過氧化物的機制….………………...30
圖七、試驗設計………………………………………………………....42
圖八、粗鵝蛋黃蛋白質之製備流程…………………………………... 44
圖九、濾膜區分流程圖…………………………………………………61
圖十、不同酵素與GEYP濃度對其水解物水解率的影響…………..71
圖十一、Alcalase (a)與Flavourzyme (b) 濃度與水解時間對GEYP水解物之水解率之影響………………………………………..73
圖十二、不同酵素與水解時間對GEYP水解物水解率之影響 (a) 及其pH值之變化 (b)…………………………………..…..…76
圖十三、酵素種類與水解時間對GEYP水解物產率之影響......…...80
圖十四、水解時間及酵素種類對GEYP水解物之DPPH自由基清除能力與BHT當量之影響…………………………………...83
圖十五、水解時間及酵素種類對GEYP水解物螯合亞鐵離子能力與 EDTA當量之影響……86
圖十六、GEYP水解物之水解率對亞鐵離子螯合能力的關係……...87
圖十七、水解時間及酵素種類對GEYP水解物還原力和相對BHT當量之影響……………..92
圖十八、GEYP水解物之水解率對還原力的關係…………………...93
圖十九、水解時間及酵素種類對GEYP水解物氫氧自由基清除能力之影響.......95
表次
表一、各種禽蛋之重量、蛋白、蛋黃及蛋殼所占百分比………….6
表二、禽類蛋黃蛋白質之組成………………………………...….….8
表三、鵝蛋黃及GEYP之基本組成分…………....….……….…….69
表四、GEYP水解物中總磷的含量……………...………………….90
表五、GEYP、MH12h 及其膜區分物之分子量分佈………….….98
表六、MH12h 經不同分子量限制濾膜區分對其還原力、螯合力、氫氧自由基和DPPH自由基清除能力之影響……….……100
表七、GEYP、MH12h、30kDa 與1kDa濃縮液的胺基酸組成...103
附錄次
附錄一、L-Leucine 標準檢量線…………..…………………….….125
附錄二、BHT清除DPPH自由基清除能力之標準檢量線…..…...125
附錄三、EDTA螯合亞鐵離子之標準檢量線……………….…..…126
附錄四、KH2PO4之標準檢量線…………………………………....126
附錄五、還原力之標準檢量線…………………………………..…127
附錄六、MH12h經不同分子量限值濾膜區分所得區分物之分子量
分佈…………………………………………………..……128
附錄七、標準品分子量與滯留時間檢量線……………...…...……129
附錄八、分子量標準品之高效液相層析圖………………………..130
附錄九、胺基酸標準品之高效液相層析圖…………………..……131
五十嵐脩、金田尚志、福場博保、美濃真,1986。過氧化脂質與營養。光生館。東京。
王錦盟、王勝德、邱作相、吳國欽、葉力子、陳立人,2002。籠飼白羅曼鵝之產蛋模式。中國畜牧學會會誌,31 (1) : 13-18。
王勝德,2000。利用光照調節種母鵝產蛋期。畜產專訊第三十一期。行政院農業委員會畜產試驗所編印。
王勝德、吳國欽、邱作相、陳振台、葉力子,1996。八十四年度種鵝資訊調查。臺灣農業32:(5)82~88。
李舜榮、吳國欽,2004。鵝品種介紹。鵝飼養管理手冊。p.4-9。台南縣。
吳珊儀、郭俊欽、蔡正宗,2002。利用改進高效液相層析法分析生鮮及加熱豬肉及禽肉肌肽與甲肌肽之含量。台灣農業化學與食品科學,40,470-479。
林慶文,1983。蛋之化學與利用。華香園出版社,台北市。p.1-6,16-48, 273-274,355-359。
邱作相、洪典戊、戴謙,1989。鵝隻各品種產蛋性能之選育。畜產評議會試驗研究工作報告。
孫慧吟,2009。酵素種類、水解時間及胜肽分子量大小對脫脂鴨胸肉水解物抗氧化性之影響。東海大學食品科學系碩士論文。p.109-111。
陳明造,2006。蛋品加工理論與應用第二版。p.77-96;323-331;472-491。藝軒圖書出版社。
葉力子,1998。 種母鵝產蛋性能改良。台灣省畜產試驗所四十年所慶家禽遺傳育種研討會論文集。
張為憲,1995。食品化學。p.338-339。華香園出版社印行。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文,1995。 食品化學。p.89-91。國立編譯館主編。華香園出版社印行。
張勝善,1986。蛋品加工學。國立編譯館。p.79-138; 105-128。華香園出版社。
張勝善,1992。蛋品加工學 (第二版)。p.80-102; 153-155。國立編譯館。華香園出版社。
遠藤 剛,淺田浩二,1992。活性酸素在生物中之生存、消去、作用。食品工業。5月30日,20-25。
賈玉祥、粘碧珠,2006。鵝產業新思維:1.牧草養鵝。畜產專訊第五十八期。行政院農業委員會畜產試驗所編印。
蔡佩潔,2009。烏骨雞爪酵素水解物in vitro抗氧化及細胞光保護特性之探討。中興大學動物科學系碩士論文。p.22-23。
鄭富元、柳育澤、萬添春、陳志銘、林亮全,2007。酵素水解雞腿骨蛋白製備活性胜肽之研究Ⅱ: 抗氧化性分析。 台灣農業化學與食品科學,45 (2) :84-90。
賴育玫,2008。利用膜反應系統連續生產小分子明膠水解物之研究碩士論文。p.36-38。
賴銘癸、胡見龍、葉力子。1996。光照週期對母鵝產蛋之影響。畜產研究。29(2):129-135。
歐修汶,2003。白羅曼種鵝繁殖期調節應用之研究。屏東科技大學畜產系碩士論文。
Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers, New York. pp.171-173.
Anfinsen, C.B., and Scheraga, H.A. (1975). Experimental and theoretical aspects of aspects of protein folding. Adv. Prot. Chem., 29, 205-300.
A.O.A.C. (1995). Offical methods of analysis (16th ed). Association of
Analytical Chemist., Washington, USA.
Aspmo, S. I., Horn, S. J., and Eijsink, V. G. H. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem., 40, 1957-1966.
Aunstrup, K. (1980). Proteinases. In: Microbial enzymes and bioconversions (Ros, A.H., ed.), Academic Press, London, pp. 49-114.
Bando, N., hayashi, H., Wakamatsu, S., Inakuma, T., Miyoshi, M., Nagao, A., Yamauchi, R., Terao, J. (2004). Participation of singlet oxygen in ultraviolet-a- induced lipid peroxidation in mouse skin and its inhibition by dietary β-carotene: an ex vivo study. Free Radic. Biol. Med., 37, 1854-1863.
Baumy, J.J., and Brule, G. (1988). Effect of pH and ionic strength on the binding of bivalent cations to b-casein. Lait., 68, 409-418.
Bennet, T., Desmond, A., Harrington, M., McDonagh, D., FitzGerald, R., and Flynn, A. (2000). The effect of high intakes of casein and casein phosphopeptide on calcium absorption in the rat. British J. Nutr., 83, 673-680.
Bhaskar, N., Benila, T., Radha, C., and Lalitha, R.G. (2008). Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease.
Bioresour. Technol., 99, 335–343.
Björnhag, G. (1979). Growth in newly hatched birds. Swedish Journal of Agricultural Research, 9, 121-125.
Blair, I.A. (2001). Lipid hydroperoside-mediated DNA damage. Exp. Gero. 36, 1473-1481.
Bougatef, A.,Hajji, M., Balti, R., Lassoud, I., Triki-Ellouz, Y. and Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem., 114, 1198-1205.
Branen, A.C. (1975). Toxicologes and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc., 52, 59-63.
Cacciuttolo, M.A., Trinh, L., Lumpkin, J.A., Rao, G., 1993. Hyperoxia induces DNA damage in mammalian cells. Free Radic. Biol. Med. 14, 267-276.
Cantrell, A., McGravey, D.J., Truscott, T.G., Rancan, F., Böhm, F. (2003). Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch. Biochem. Biophys., 412, 47-54.
Chang, C.Y., Wu, K.C., and Chiang, S.H. (2007). Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chem., 100, 1537-1543.
Chen, H.M., Muramoto, K., Yamauchi, F., and Nokihara, K. (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agri. Food Chem., 44, 2619-2623.
Chen, H. M., Muramoto, K., Yamauchi, F., and Nokihara, K and Nokihara, K. (1998). Antioxidant properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agri. Food Chem., 46, 49-53.
Chen, P.S., Toribara, Jr.T.Y., and Warner, H. (1956). Assay od inorganic phosphate, total phosphate and phosphatease. Anal. Chem., 28, 1756.
Chen, Y.R., Gunther, M.R., Mason, R.P. (1999). Ant electron spin resonance spin-trapping investingation of the free radicals formed by the reaction of mitochoncrial cytochrome c oxidase with H2O2. J. Biol. Chem., 274, 3308-3314.
Chiang, W.D., Tsou, M.J. and Chu, Y.H. (1999). Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system. Food Chem., 65, 189-194.
Chung, S. L., and Ferrier, L. K. (1991). Partial lipid extraction of egg yolk powder: effects on emulsifying properties and soluble protein fraction.
J. Food Sci., 56, 5 1255-1258.
Cook, N.C., and Samman, S. (1996). Flavonoid: Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7, 66-76.
Cumby, N., Zhong, Y., Naczk, M., and Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem., 109, 144-148.
Dávalos, A., Miguel, M., Bartolomé, B., and López-Fandiño R. (2004). Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot., 67(9), 1939-44.
Davies, M.J. and Hawkins C. L. (2004). Serial Review: Protein Radicals in Biological Systems–ESR Spin Trapping and Immuno Spin Trapping Approaches. Free Radic. Biol. Med., 36, 9, 1072 – 1086.
Decker, E.A., and Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem., 38, 674-677.
Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem., 107, 1485-1493.
Elias, R.J., Kellerby, S.S., and Decker, E.A. (2008). Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr., 48, 430-441.
Ferrari, C.K. and Torres, E.A. (2003). Biochemical pharmacology of functional food and prevention of chronic diseases of aging. Biomed. Pharmacother., 57, 251-260.
Ferreira, I.C.F.R., Baptista, P., Vilas-Boas, M., and Barros, L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100, 1511-1516.
Fruton, J.S. (1976a). The mechanism of the catalytic action of pepsin and related acid proteinase. Adv. Enzymol., 44,1-36.
Fujisawa, S., Kadoma, Y., and Yokoe, I. (2004). Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites. Chem. Phys. Lipids, 130, 189-195.
Garner, B., Waldeck, A.R., Witting, P.K., Rey, K.A., and Stocker, R. (1998). Oxidation of high density liproteins. Ⅱ. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AⅠand AⅡ. J. Biol. Chem., 273, 6088-6095.
Gilbert, A.B., Ed Bell, D.J., and Freeman, B.M. (1971). in Physiology and Biochemistry of Domestic fowl, Academic press, p.1291.
Gildberd, A., Hermes, J.E., and Orejana, F.M. (1984). Acceleration of autolysis during fish saurce fermentation by adding acid and reducing the salt content. J. food sci. and agric., 35, 1363-1369.
Giménez, B., Alemán, A., Montero, P., and Gómez-Guillén, M.C. (2009). Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem., 114, 976-983.
Gordon, M. (2001). Angioxidants and food stability. In J. Pokorny, N. Yanishlieva, and M. Gordone (Eds), Antioxidant in Food. pp. 7-21. New York, USA: CRC press.
Gorkum, R.V. and Bouwman, E. (2005). The oxidative drying of alkyd paint catalysed by metal complexes. Coord. Chem. Rev., 249, 1709-1728.
Guérard, F., Dufossé, L., De La Broise, D., and Binet, A. (2001). Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J. Mol. Catal. B., Enzym., 11, 1051–1059.
Gunther, M.R., Peter, J.A., and Sivaneri, M.K. (2002). Histidinyl radical formation in the self-peroxidation reaction of bovine copper-zinc superoxide dismutase. J. Biol. Chem., 277, 9160-9166. Gutteridge, J. M. (1993). Anthracycline toxicity, iron and oxygen radicals, and chelation therapy. J. Lab Clin. Med., 122, 228-229.
Halliwell, B. (1993). The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis, 23, 118. Halliwell, B. (1994). Free radicals, antioxidants and human disease: curiosity, cause or consequence. Lancet. 344, 721-723.
Haurowitz, F., Tunca, M., Scherin, P., and Göksu, V. (1945). The action of trypsin on native and denatured proteins. J. Biol. Chem., 157, 621-625.
Hawkins, C.L. and Davies, M.J. (1998). Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem. J., 332, 617-625.
Hernández-Ledesma, B., Dávalos, A., Bartolomé, B., and Amigo, L. (2005). Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of activie peptides by HPLC-MS/MS. J. Agric. Food Chem., 53, 588-593.
Hoyle, N., and merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). J.Food Sci., 59 (1), 76-79.
Jao, C.L. and Ko, W.C., (2002). 1,1-diphenyl-2-picrylhydrazyl ( DPPH ) radical scavenging by protein hydrolyzates from Tuna cooking juice. Fish. Sci., 68, 430-435.
Karnovsky, M.J. (1994). Cytochemistry and related oxygen species: a retrospective. Histochemie, 102, 15-27.
Kang, H. G., Jeong, S.H., Cho, J.K., Kim, D.G., Park, J.M., and Cho, M.H. (2005). Evaluation of estrogenic activity of butylated hydroxyanisole in immature females and castrated rats. Toxicology, 213, 147-156.
Kawabata C, Komai T, Gocho S. Elimination of bitterness of bitter peptides by squid liver carboxypeptidase. (1996). Biotechnology for improved foods and flavors. ACS Symp Ser 637. Washington (DC): American Chemical Society, pp. 167–72.
Kelman, D.J., Degray, J.A., and Mason, R.P. (1994). Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates. J. Biol. Chem., 269, 7458-7463.
Kim, G.N., Jang, H.D., and Kim, C.I. (2007). Antioxidant capacity of caseinophosphopeptides prepared from sodium caseinate using Alcalase. Food Chem., 104, 1359-1365.
Kim, S.K., Kim, Y.T., Byun, H.G., Nam, K.S., Joo, D.S., and Shahidi, F. (2001). Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack skin. J. Agric. and Food Chem., 49, 1984-1989.
Klompong, V., Benjakul, S., Kantachote, D., and Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem., 107, 1317-1327.
Knecht, R. and Chang, J.Y. (1986). Liquid chromatographic determination of amino acids after gas-phase hydrolysis and deterivatization with (dimethylamino) azobenzenesulfonyl chloride. Anal. Chem., 58, 2375-2379.
Kong, B.H., and Xiong, Y.L. (2003). Antioxidant activity of zein hydrolysates in liposome system and the possible mode of actions. J. Agric. Food Chem. 54, 6059-6068.
Kong, X., Zhou, H., and Hua, Y. (2008). Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes. J. Sci. Food Agric., 88, 920-926.
Lahl, W.J. and Brum, S.D. (1994). Enzymatic production of protein hydrolysates for food use. Food Technol., 48, 68-71.
Larsen, J. E., and Froning, G. W. (1981). Extraction and processing of various components from egg yolk. Poultry Sci., 60, 160–164.
Larson, R.A. (1988). The antioxidants of higher plants. Phytochem., 27, 969-978.
Li, Y., Jiang, B., Zhang, T., Mu, W., and Liu, J. (2008). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem., 106, 444-450.
Li, Z. Y., Youravong, W., and H-Kittikun, A. (2010). Protein hydrolysis by protease isolated from tuna spleen by membrane filtration: A comparative study with commercial proteases. Food Sci. Technol.43, 166-172.
Lin, J.-K. and Wang, C.-H. (1980). Determination of Urinary Amino Acids by Liquid Chromatography with Dabsyl Chloride. Clin. Chem. 26, 579-583.
Linderstrøm-Lang, K. (1939). Proteolytic enzymes. Ann. Rev.Biochem., 8, 37-58.
Linderstrøm-Lang, K. (1952). Proteins and enzymes. Ⅲ. The initial stages in the breakdown of proteins by enzymes. Lane medical lectures, Stanford University Press, California. Vol. Ⅵ, pp. 52-53.
Liu, Q., Kong, B., Xiong, Y. L. and Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118, 403-410.
Lu, C.L., and Baker, R.C. (1986). Characteristic of egg yolk phsvitin as an antioxidant for inhibiting metal-catalyzed phospholipids oxidations. Poult. Sci., 65, 2065-2070.
Lu, C.L., and Baker, R.C. (1987). Effect of pH and food ingredients on the stability egg yolk phospholipids and the metal-chelator antioxidant activity of phosvitin. J. Food Sci., 52, 613-616.
Mahmoud, M.I. (1994). Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol., 48, 89-95.
Manley, C.H. and Ahmedi, S. (1995). The development of process flavors Trends Food Sci. Technol., 6, 46-51.
Mecham, D.K. and Olcott, H.S. (1949). J. Am. Chem. Soc., 71, 3670.
Martin, W.G., Vandegaer, J.E. and Cook, W.H. (1957). Fractionation of livetin and the molecular weights of the α- and β-components. Can. J. Biochem. Physiol. 35, 241-250.
Marcuse, R. (1962). The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. J. Am. Oil Chem. Soc., 39, 2, 97-103.
McCord, J.M. (2000). The evolution of free radicals and oxidative stress. Am. J. Med., 108, 652-659.
Mendis, E., Rajapakse, N., Bun, H.G., and Kim, S.K. (2005). Investigation of jumbo squid (Dosidicus giga) skin gelatin peptides for their in vitro antioxidant effect. Life Sciences., 77, 2166-2178.
Menezes, S.L.D., and Augusto, O. (2001). EPR detection of glutathionyl and protein-tyrosyl radicals during the interaction of peroxynitrite with macrophages (J774). J. Biol. Chem., 276, 39879-39884.
Moskovitz, J., Yim, M.B., and Chock, P.B. (2002) Free radicals and disease. Arch. Biochem. Biophys., 397(2), 354-359.
Moure, A., Dominguez, H., and Parajo, J.C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem., 41, 447-456.
Murase, H., Nagao, A., and Terao, J. (1993). Antioxidant and mulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) arnosine. J. Agric. Food Chem., 41, 1601-1604.
Mutilangi, W.A.M., Panyam, D., and Kirara A. (1995). Hydrolysates from Proteolysis of Heat-denatured Whey Proteins. 60, 5, 1104-1109.
Nakadai, T., Nansuno, S. and Iguchi, N. (1972). The action of peptidase from Aspergillus oryzae in digestion of soybean protein. Agric. Boil. Chem., 36, 261.
Nakao, L. S., Iwai, L.K., Kalil, J. and Augusto, O. (2003). Radical production from free and peptide-bond methionine sulfoxide oxidation by peroxynitrite and hydrogen peroxide/iron (Ⅱ). FEBS letters. 547, 87-91.
Namiki, M. (1990). Antioxidants/antimutagens in foods. Crit. Rev. Food Sci. Nutr., 29, 281-300.
Niki, E., Yhmamoto, Y., Komuro, E., and Sato, K. (1991). Membrance damage due to lipid oxidation. Am. J. Clin. Nutr., 53, 201-205.
Novo Industri A/C (1980c). Alcalase 0.6L. B-207, Novo Industri A/S, Bagsvaerd, Denmark.
Papas, A.M. (1999). Diet and antioxidant status. Food Chem. Toxic., 37, 999-1007.
Park, P.J., Jung, W.K., Choi, Y.R., and Kim, S.K. (2000). Antioxidative Effect of Enzymatic protein hydrolysate from lecithin free egg yolk. J. Life Sci., 10 (2), 131-139.
Park, P.J., Jung, W.K., Nam, K.D., Shahidi, F., Kim, S.K. (2001). Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin free egg yolk. J. Am. Oil Chem. Soc., 78, 651-656.
Panzenbock, U. and Stocker, R. (2005). Formation of methionine sulfoxide containg specific forms of oxidized high-density lipoproteins. Biochim. Biophys. Acta., 1703, 171-181.
Peng, X., Xiong, Y.L., and Kong, B. (2009). Antioxidant activity of peptide fractions whey protein hydrolysates as measured by electron spin resonance. Food Chem. 113, 196-201.
Qian, Z.J., Jung, W.k., Byun, H.G., Kim, S.K. (2008b). Free radical scavenging activity of novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catebeiana Shaw. Bioresour. Technol. 99, 1690-1698.
Ranathung, S., Rajapakse, N., Kim, S.K. (2006). Purification and characterization of antioxidative peptide derived from muscle of congereel (Conger myriaster). Eur. Food Res. Technol. 222, 310-315.
Rikans, L.E. and Hornbrook, K.R. (1997). Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta. 1362, 116-127.
Saiga, A., Tanabe, S., and Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem., 51, 3661-3667.
Sakanaka, S., Tachibana, Y., Ishihara, N., and Juneja, L.R. (2004). Antioxidant activity of egg yolk protein hydrolysates in a linoleic acid oxidation system. Food Chem., 86, 99-103.
Sakanaka, S. and Tachibana, Y. (2006). Active oxygen scavenging activity of egg yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem., 95, 243-249.
Shahidi, F., Han, X.Q. and Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem., 53, 285-293.
Sherwin, E.R. (1990). Antioxidant. In A.L.Branen, P.M. Davidson, and S. Salminen (Eds.), Food additivies (pp. 139-193). New York, USA: Marcel Dekker.
Shigenaga, M.K., Gimeno, C.J., Ames, B.N. (1989). Urinary 8-hydroxy-2’-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. USA. 86, 9697-9701.
Sim, J.S. (1994). New extraction and fractionation method for lecithin and neutral oil from egg yolk. In J. S. Sim, and S. Nakai (Eds.), Egg uses and processing technologies. Wallingford, UK: CAB International. pp. 128–138.
Shimada, K., Fujikawa, K., Yahara, K., and nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40, 945-948.
Simic, M.G. (1988). Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat. Res. 202, 377-386.
Sörensen, S.P.L. (1908). Enzymstudien. I. Über die quantitative messung proteolytischer Spaltungen. ‘ Die Formoltitrierung’. Biochem. Z. 7, 45-101.
Spellman, D., McEvoy, E., O’Cuinn, G., and FitzGerald, R.J. (2003). Porteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. Int. Dairy J., 13, 447-453.
Stadtman, E.R. (2004). Role of oxidant species in aging. Curr. Med.. Chem., 11, 1105-1112.
Stadelman W. J. (1973). Egg science and technology. 豪華書局有限公司。p. 96-97.
Stohs, S. J., and Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 18, 321-336.
Suetsuna, K., Ukeda, H., and Ochi H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11, 128-131.
Sugino, H., Ishikawa, M., Nitoda, T., Koketsu, M., Juneja, L.R., and Kim, M. (1997). Antioxidative activity of egg yolk phospholipids. J. Agric. Food Chem., 45, 551-554.
Tai, C. (1989). Utilization and Performance of Waterfowl in the Republic of China on Taiwan, Food & Fertilizer, Technology Center Extension Bulletin No. 291. ASPAC.
Thiansilakul, Y., Benjakul, S., and Shahidi, F. (2007). Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J. Food Biochem. 31, 266-287.
Tong, L.M., Sasaki, S., McClements, D.J., and Decker, E. A. (2000). Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food. Chem., 48, 1473-1478.
Traub, W., Piez, K.A. (1971). The chemistry and structure of collagen. Adv. Protein Chem., 25, 243-352.
Tsuge, N., Eikawa, Y., Nomura, Y., Yamamoto, M., and sugisawa, K. (1991). Antioxidative activity of peptides prepared by enzymatic hydrolysis of egg-white albumin. Nippon Nogeikagaku Kaishi, 65, 1635-1641.
Tucker G. A. and Woods L.F.J. (1995). Enzymes in Food processing. 2nd p12-17. Blackie academic and professional, and imprint of Chapman and Hall, Wester Cleddens Road, Bishobriggs, Glasgow G64 2NZ.
Vaithanomsat, P. and Punyasawon C. (2008). Process optimization for the production of Philosamia ricini (eri silk) papae hydrolysate. Kasetsart J. (Nat. Sci.) 42, 341-352.
Wang, J.S., Zhao, M.M., Zhao, Q.Z., and Jiang, Y.M. (2007). Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem., 101, 4, 1658-1663.
Ward, O.P. (1983). Proteinase. In: Microbial enzymes and biotechnology (Fogarty, W.M., ed.), Elsevier Applied Science Publ., London. Pp.251-317.
Williams, G.M., McQueen, C.A., and Tong, C. (1990). Toxicity studies of butylated hydroxyanisole and butylated hydroxytoluene. I. Genetic and cellular effects. Food Chem. Toxic., 28, 12, 793-798.
Wu, H.C., Chen, H.M., and Shiau, C.Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int., 36, 949-957.
Yagi, K. (1987). Lipid peroxides and human disease. Chem. Phy. Lipids. 45, 337-341.
Yamamoto, Y., Sogo, N., Iwao, R., and Miyamoto, T. (1990). Antioxidant effect of egg yolk on linoleate in emulsion. Agric. Biol. Chem., 54,3099-3104.
Yang. J.-I., Ho, H.-Y., Chu, Y.-J., and Chow, C.-J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem., 110, 128-136.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top