跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/30 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張慧文
研究生(外文):Cheong Hui Woon
論文名稱:以高壓均質製備幾丁聚醣奈米乳滴乳化液及其性質之研究
論文名稱(外文):Preparation and Characterization of Chitosan Nano-Droplet Emulsion by High Pressure Homogenization
指導教授:阮進惠阮進惠引用關係
指導教授(外文):Jin-Hwei Rwan
口試委員:吳明昌蔡正宗
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:96
中文關鍵詞:幾丁聚醣乳化性質奈米液滴熱安定性凍結-解凍安定性
外文關鍵詞:ChitosanEmulsifying propertiesNano-dropletsThermal stabilityFreeze-thawing stability.
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
將幾丁質 (chitin) 以57% (w/v) NaOH溶液於100℃加熱160 min去除乙醯基 (acetyl group),並得80 ~ 90% 去乙醯度之幾丁聚醣。將幾丁聚醣加入0.1 M醋酸溶液為1.5%濃度及調其溶液至pH 6.0,接著,各別一邊加入不同油量 (10、30、50、70、90及120 mL/100 mL chitosan solution)(加入速率:3 mL/interval),一邊以旋轉式均質機(轉速9500 rpm)先進行粗乳化,再以高壓均質機於不同乳化之壓力(500、1000、1500及1800 bar)及不同乳化循環次數(1至7次)下乳化。然後測定這些乳化液之液滴大小 (droplet size) 及儲存四星期之安定性。由此實驗之結果選出能製備出奈米液滴 (nano-droplets) 及良好安定性乳化液之條件,製出各組乳化液,並進行不同溫度下(5℃、25℃、60℃、100℃及121℃) 處理30 min,或進行5次凍結-解凍循環 (freeze-thawing) 後,測定其乳化液之液滴大小、黏度及儲存安定性。

結果發現,於適當乳化之壓力、油量/幾丁聚醣溶液之比例及乳化循環次數下乳化,可製成奈米液滴且呈現良好儲存安定性之乳化液。其中,油量/幾丁聚醣依比例較低、乳化壓力愈高及乳化循環次數愈多,其乳化液之液滴出現愈小及儲存安定性愈佳之趨勢。

在溫度處理及凍結-解凍對乳化液性質之影響方面,則選出下列乳化條件可製備出奈米液滴及良好儲存安定性之各組乳化液: A組: 1500 bar, 30 mL oil/100 mL chitosan solution, 3 passes; B組: 1500 bar, 50 mL oil/100 mL chitosan solution, 7 passes; C組: 1500 bar, 70 mL oil/100 mL chitosan solution, 7 passes; D組: 1500 bar, 90 mL oil/100 mL chitosan solution, 6 passes及E組: 1500 bar, 120 mL oil/100 mL chitosan solution, 7 passes。經不同溫度處理以後,發現處理溫度較高,上述各組乳化液滴稍變大,黏度稍變小,但仍維持在奈米之大小及保存在26天以上,並未產生分離現象,其中A及B組與儲存四星期仍維持安定。在凍結-解凍安定性方面,上述5組乳化液於5次凍結-解凍後,均維持安定(即油及水未分離),其中A、B及C組之液滴仍為奈米狀態。
Chitin was treated with NaOH solution (57%, w/v) under high temperature treatment (100℃) for 160 min to cleave acetyl group and became 80~90 % deacetylated chitosan. Pre-emulsions that were carried out by adding oil (10, 30, 50, 70, 90 and 120 mL oil/100 mL chitosan solution, 3 mL/interval) into chitosan solution (1.5 % concentrations, pH 6.0) and homogenizing with polytron homogenizer (9500 rpm), then, were passed through the high pressure homogenizer at different pressures (500, 1000, 1500 and 1800 bar) and recycled in some passes (1 to 7 passes). The emulsions were determined on the droplet size and stability for four weeks.

From the above result, emulsions that had nano-droplets and good stability were chosen for tests of thermal and freeze-thawing stabilities. Thermal stability was treated at 5℃, 25℃, 60℃, 100℃ and 121℃ for 30 min, then stored at room temperature for 4 weeks. Freeze-thawing treatment was carried out by freezing at -18℃ and thawing at 25℃ for 1 hr, individually; five freeze-thawing cycles were made. The treated emulsions were determined the droplet size, viscosity and stability.

As result, emulsions that were emulsified under suitable conditions showed nano size droplets and good stability. Lower oil/chitosan solution ratio, higher homogenizing pressure and more number of passes gave smaller droplet-sizes and more stable emulsions, group A: 1500 bar, 30 mL oil/100 mL chitosan solution, 3 passes; group B: 1500 bar, 50 mL oil/100 mL chitosan solution, 7 passes; group C: 1500 bar, 70 mL oil/100 mL chitosan solution, 7 passes; group D: 1500 bar, 90 mL oil/100 mL chitosan solution, 6 passes and group E: 1500 bar, 120 mL oil/100 mL chitosan solution, 7 passes. On the thermal test, increasing treatment temperature showed the emulsions slightly increasing in droplet-size and decreasing in viscosity, but still remaining in nano droplets and stable above 26 days. Especially, group A and B appeared no separation after any temperature treatment during four weeks.

On the freeze-thawing resistance, all emulsions were stable and gave no separation in 5 freeze-thawing cycles. Droplets of group A, B and C still remained in nano size.
總目錄 頁次
壹、中文摘要.........................................1
貳、英文摘要.........................................3
參、前言............................................5
肆、文獻整理.........................................8
一、幾丁質與幾丁聚醣..................................8
(一)幾丁質.........................................8
(二)幾丁聚醣......................................10
(三)幾丁質與幾丁聚醣結構...........................10
(四)幾丁質與幾丁聚醣的晶型架構......................12
(五)幾丁質與幾丁聚醣溶液特性........................12
(六)幾丁質與幾丁聚醣的製備..........................18
(七)幾丁質與幾丁聚醣之應用..........................25
二、乳化...........................................35
(一)乳化的原理....................................35
(二)乳化的定義....................................36
(三)乳化劑........................................37
(四)HLB (Hydrophilic Lipophilic Balance).........39
(五)乳化液類型....................................41
(六)乳化不安定型態.................................43
(七)影響乳化安定性的因素............................45
(八)奈米乳化原理及應用..............................46
三、幾丁聚醣之乳化性質...................................49
(一)幾丁聚醣乳化相關研究...............................49
(二)幾丁聚醣乳化安定作用...............................50
伍、材料與方法..........................................53
一、實驗材料............................................53
二、實驗儀器............................................53
三、實驗方法............................................54
(一)幾丁聚醣之製備.....................................54
(二)乳化液之最高油量及幾丁聚醣溶液比例決定之方法...........54
(三)粗乳化液之製備.....................................55
(四)以高壓均質機進行乳化................................55
(五)乳化液乳化液滴大小分佈及安定性之測定..................55
(六)處理溫度對幾丁聚醣乳化液安定性影響之測定...............56
(七)凍結-解凍循環對乳化液安定性影響之測定.................57
四、分析方法.............................................57
(一)幾丁聚醣去乙醯之測定.................................57
(二)高壓均質乳化液滴粒徑大小之測定........................57
(三)乳化液視黏度之測定...................................58
(四)乳化形態的觀察與測定.................................58
(五)統計分析...........................................58
陸、結果與討論...........................................59
一、幾丁聚醣之製備........................................59
二、乳化液之最高油量及幾丁聚醣溶液比例之決定.................59
三、均質壓力、油量/幾丁聚醣比例及循環次數對乳化液之液滴大小及安定性之響...60
(一)乳化液滴大小之影響...........................60
(二)乳化液安定性之影響...........................65
四、處理溫度對幾聚醣乳化液滴大小影響........................68
(一)乳化液滴大小之影響..................................68
(二)乳化液黏度之影響....................................70
(三)乳化液安定性之影響...................................72
五、循環凍結-解凍對幾丁聚醣乳化液滴及安定性之影響............74
六、乳化液類型之觀察......................................77
柒、結論.................................................79
捌、參考文獻.............................................82

圖目錄 頁次

圖一、幾丁質、幾丁聚醣及纖維素之架構........................11
圖二、α型幾丁質之立體架構..................................14
圖三、β型幾丁質之立體架構..................................15
圖四、幾丁聚醣在酸性溶液中之結構............................17
圖五、軟體動物外殼有機結構模型的描繪圖......................17
圖六、幾丁質與幾丁聚醣加工之簡單流程圖......................24
圖七、乳化劑之形態及其種類.................................38
圖八、兩相乳化液 (a)水中油滴型(O/W)或是(b)油中水滴型
(W/O)。多重相乳化液(c) 以W/O/W型做說明...............42
圖九、乳液的幾種不穩定現象示意圖............................44
圖十、均質機和均質閥之構造.................................47
圖十一、均質壓力和油量/幾丁聚醣溶液比例對乳化液滴大小之影響....61
圖十二、乳化循環次數對乳化液滴大小之影響....................63
圖十三、凍結-解凍循環對乳化液滴粒之影響.....................75
圖十四、凍結-解凍循環5次後乳化液外觀........................76
圖十五、幾丁聚醣之乳化液類型觀察............................78

表目錄 頁次
表一、甲殼動物、節足動物、軟體動物及真菌類之幾丁質含量…9
表二、幾丁質三種晶型架構與特性…………………………………13
表三、利用鹽酸、乙酸、亞硫酸以及EDTA處理不同種類螃蟹去除礦物質後分子量與去乙醯度的變化……21
表四、不同去乙醯程度幾丁聚醣之製備條件………………………23
表五、幾丁質及幾丁聚醣常見之應用領域…………………………33
表六、HLB 值與用途間的關係………………………………………40
表七、奈米級乳滴製備之乳化條件…………………………………64
表八、乳化壓力、油量/幾丁聚醣比例及循環次數對乳化液安定性之影響……67
表九、處理溫度對乳化液滴大小之影響……………………………69
表十、處理溫度對乳化液黏度之影響………………………………71
表十一、處理溫度對乳化液安定性之影響…………………………73
尹華 (2000)。微生物凝絮劑的研究現狀與發展趨勢。雲南環境科學,19: 226-229。

刈米孝夫 原著,王鳳英 編譯 (2003)。界面活性劑的原理與應用。高立圖書有限公司出版。

方紹威 (1990)。幾丁質與幾丁聚醣在廢水處理,生化,食品和醫藥上之研究發展現況。藥物食品檢驗局調查研究年報,8: 20-30。

王綺芬 (1989)。蟹殼幾丁質產品理化性質測定及製備方法之研究。國立台灣大學食品科技研究所碩士論文。

江晃榮 (1998)。生物高分子(幾丁質、膠原蛋白)產業現況與展望。財團法人生物技術開發中心,pp1-99。

何東保、石毅、梁紅波及詹東風 (2002)。殼聚糖─海藻酸鈉協同相互作用及其凝膠化的研究。武漢大學學報(理學版),48: 193-196。

吳玟秀 (2003)。不同水解度之幾丁聚醣對老鼠營養質之吸收、肝臟和血清膽固醇和三酸甘油脂之含量及體重之影響。私立東海大學碩士論文。

吳適 (1979)。乳化劑在食品工業上的應用。食品工業,11: 28-32。

呂朋、李八方及夏蘭 (2001)。殼聚醣在醫藥保健中的應用。中國海洋藥物,20: 30-34。

李勳宜 (1988)。草蝦幾丁聚醣之製備及其應用研究。國立台灣大學食品科學系碩士論文。

李續娥、張文學及劉心潔 (1999)。湯劑煎煮法的研究進展。西北藥學雜誌,14: 34。

沈家弘 (2004)。不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研究。私立東海大學食品科學研究所碩士論文。

沈明才、譚竹鈞、林延填、張鋒、胡華平 (2007)。交聯殼聚糖微球純化抑肽酶研究。廣州化工,35: 1-3。

阮進惠 (1984)。脫色豬血血球蛋白之加熱修飾及其在食品上之應用。東海學報,25: 1013-1027。

阮進惠 (1995)。利用不同去乙醯度之幾丁聚醣固定澱粉葡萄糖化。中農化誌,33:731-746。

阮進惠及沈家弘 (2006)。不同去乙醯度幾丁聚醣乳化性質之比較及其應用與沙拉醬之研究。台灣農業化學與食品科學,44: 41-53。

阮進惠、沈家弘及閻立平 (2008)。加熱及凍結-解凍處理對幾丁聚醣乳化液安定性之影響。台灣農業化學與食品科學,46: 111-117。

阮進惠及林芬年 (1999)。利用幾丁聚醣脫酸澄清梅汁。中農化誌,37: 403。

阮進惠、林翰良及羅淑珍 (1997)。幾丁聚醣水解物之連續式生產及其抑菌作用。中農化誌,35: 596-611。

阮進惠及吳貞誼 (1996)。利用幾丁聚醣脫酸葡萄柚汁。食品科學,23: 509。

周大鑫 (2006)。奈米粉體分散設備發展現況。奈米機械技術專輯,279: 5-16。

林俊煌 (1992)。不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度;膜之物理特性的關係。國立海洋大學水產食品科學研究所碩士論文。

林淑君、梁世怡、黃仁勇、曾豐仁、邱賢忠、沈一慶、傅鍔及江正陽 (2006)。幾丁聚醣在牙周組織工程的應用。中華民國牙周病醫學會雜誌,11: 87-96。

林錫杰 (2000)。幾丁質在環保方面之應用。科技與技術,32: 27-33。
邵惠珍 (2000)。以幾丁聚醣吸附雙成分金屬離子之平衡模式。元智大學化學工程與材料工程學研究所碩士論文。

柯建邦 (2006)。不同去乙醯度膠態幾丁聚醣乳化性質之比較及其應用於冰淇淋之研究。私立東海大學食品科學系研究所碩士論文。

胡玉鋒、毛春、李利、周佇琳、魏少華及沈健 (2005)。水溶性殼聚糖衍生物在殼聚糖膜表面的化學固定及抗凝血功能研究。化工新型材料,33: 19-21。

徐世昌 (2001)。生物性高分子幾丁質與幾丁聚醣之介紹與應用。化工資訊,2 : 36-45。

徐春 (2006)。殼聚糖在白葡萄酒澄清中的應用研究。中國釀造,1: 21-23。

馬小軍、王一力、包德才、付穎麗、薛偉明、雄鷹、劉袖洞及于煒婷 (2002)。海藻酸鈉/殼聚糖微膠囊生物相容性的研究。自然科學進展,12: 845-847。

張雅敏 (2002)。黑豆種子幾丁質酶之純化與性質研究。靜宜大學食品營養學研究所碩士論文。

曹晶、孫淑愛及盧鳳琦 (2005)。殼聚糖生物降解性與組織相容性。中國公共衛生,21: 1411。

莊仲揚 (2002)。幾丁聚醣於生醫產業上的應用。化工資訊,4: 46-50。

許文祥、劉巡宇、張維仁、楊正昌、王敦正、賴惠敏及李勝揚 (2004)。去乙醯幾丁聚醣/膠原蛋白組織再生膜片之活體評估。中華牙誌,23: 286-295。

陳美惠、莊淑惠及吳志律 (1999)。幾丁聚醣的物化特性。食品工業月刊,31: 1-6。

陳健祺 (2000)。幾丁類物質在生醫材料上的應用。食品工業,32: 9-17。

陳崇賢 (1996) 乳液概論。界面科學會誌,19: 1-11。

陳慶隆 (2005)。幾丁聚醣對廢水中含氯有機物與染料吸附之研究。朝陽科技大學環境工程與管理研究所碩士論文。

曾如玲及吳豐智 (1996)。幾丁聚醢吸附銅離子螯合物溶液之研究。第二十一屆廢水處理技術研討會論文集,逢甲大學:317-324。

曾淑惠 (2006),界面活性劑對以溫度轉相法進行奈米乳化之影響。嘉南藥理科技大學化粧品科技研究所碩士論文。

湯鴻霄及欒兆坤 (1997)。聚合氯化鋁與傳統混凝劑的凝聚─凝絮行為差異。環境科學,16: 497-505。

趙承琛 編著 (1991)。界面基礎科學(原名:界面化學)。復文書局出版。

趙承琛 (1995),界面科學基礎,復文書局,第十五版。

趙武奇、殷湧光、梁歧及閆海洋 (2004)。殼聚糖─海藻酸鈉緩釋製備紅景天苷微囊。食品與發酵工業,30: 66-69。

劉瓊淑 (1994)。幾丁質,幾丁聚醣及其相關酵素之特性與應用。食品工業,26: 26-36。

劉秉濤、婁淵知及徐菲 (2007)。聚合氯化鋁⁄殼聚糖複合絮凝劑在活性汙泥中的調理作用。環境化學,26: 42-45。

劉高強、劉衛星、魏美才及孫虹 (2005)。甲蟲甲殼素⁄殼聚糖的研究及其開發前景。西北林學院學報,20: 143-146。

劉高強、魏美才及王曉玲 (2004)。松毛蟲資源開發及其資源化管理的初步設想。西北林學院學報,19: 119-120。

劉曉非、胡運華、耿崑崙、姚康德及張萬起 (2005)。殼聚糖及其衍生物應用於肥胖治療的研究進展。功能高分子學報,18: 715-720。

歐靜枝 (1990),乳化溶化技術實務,復漢出版社。

潘育方及黃丹莹 (2005)。殼聚糖去除藥水煎液中重金屬的初探。化工時刊,19: 27-28。

蔡雅兆 (2004)。膠態幾丁聚醣及幾丁聚醣對小白鼠體重、營養素排出及膽固醇和三酸甘油脂含量之比較。私立東海大學食品科學研究所碩士論文。

蔡義宏 (1979)。乳化原理。應用界面化學,2: 13-19。

閻立平、柯建邦、孫百秀及阮進惠 (2010)。不同去乙醯度膠態幾丁聚醣乳化性之研究。台灣農業化學與食品科學,48: 1-10。

賴淑琪 (1979)。水產廢棄物蝦、蟹外殼之高度利用。食品工業,11: 23-28。

賴鳳英、向東及梁平 (2004)。殼聚糖在食品工業中的應用。中國甜菜糖業,2: 28-30。

謝勇、謝正興、周南進、周小江、陳江、呂農華及王崇文 (2005)。殼聚糖及其衍生物體外抗幽門螺旋桿菌作用及影響因素。中國藥理學通報,21: 1343-1347。

蘇仲卿、張珍田及莊榮輝 (1981)。利用親合層析法分離猪胰臟蛋白質水解酵素trpsin和chymotrypsin 之中間規模試驗。中國農業化學會誌,19: 218-221。

Aiba, S., Fujiwara, Y., Hideshima, T., Hwang, C., Kakizaki, M., Izume, M., Minoura, N., Rha, C. K., Shoij, T., Sinskey, A. J. and Tsutsumi A. (1986). Filmogenic properties of chitin/chitosan. In: Chitin in nature and technology. Muzzarelli, R. A. A., Jeuniaux, C., and Gooday, G. M. (Eds), Plenum Press, New York.

Aiba, S. (1992). Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromol., 14: 225-228.

Allan, C. R., and Hadiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol., 3: 285-287.

Annadurai, G., Lee, D. J., and Juang, R. S. (2000). Box-Behnken Studies on Dye Removal form Water Using Chitosan and Activated Carbon Adsorbents. J. Chin. Inst. Chem. Eng., 31: 609-615.

Austin, P. R., Brine, C. J., Castle, J. E., and Zikakis, J. P. (1981). Chitin: New facets of research. Science, 212: 749-753.

Baroni, P., Vieira, R. S., Meneghetti, E., M. G. da Silva, and Beppu, M. M. (2008). Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. J. Hazard. Mater., 152:1155-1163.

Becher, P. (1966). Emulsions: Theory and practice. 2nd ed., Reinhold, New York.

Benhamon, N., and Theriault, G. (1992). Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiol. Mol. Plant Pathol., 41: 33-52.

Blackwell, J. (1988). Physical methods for the determination of chitin structure and conformation. Meth. Enzymol., 16:435-442.

Brine, C. J. and Austin, P. R. (1981). Chitin variability with species and method of preparation. Comp. Biochem. Physiol., 69: 283-286.

Carmen, R.L., and Roland. B., (1997). Mechanical water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J. Control. Release, 44, 215-225.

Chung, L. Y., Schmidt, R. J., Hamlyn, P. F., Sagar, B. F., Andrew, A. M., and Turner, T. D. (1994). Biocompatibility of potential wound management products: fungal mycelia as asource of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J. Biomed. Mater. Res., 28: 463-469.

Clayton, W. (1943). The theory of emulsion and their technical treatment . 4th ed., The Biskiston Co., New York.

Cosio, I. G., Fisher, R. A., and Carroad, D. A. (1982). Bio-conversion of shellfish chitin waste: waste pretreatment, enzyme production, process design, and economic analysis, J. Food Sci., 47: 901-905.
Das, K. P., and Kinsella, J. E. (1990). Stability of food emulsions: physicochemical role of protein and nonprotein emulsifiers. Adv. Food Nutr. Res., 34: 82–201.

Del Blanco, L. F., Rodriguez, M. S., Schulz, P. C., and Agullo, E. (1999). Influence of the deacetylation degree on chitosan emulsification properties. Colloid Polym. Sci., 277: 1087-1092.

Deshpande, M. V. (1986). Enzymatic degradation of chitin & its biological application, J. Sci. Ind. Res., 45: 273-277.

El-Adawy, T. A. (2000). Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chem., 70: 83-91.

El-Geundi, M. S. (1991). Color removal from textile effluents by adsorption techniques. Water Res., 25: 271-273.

Fang, S. W., Li, C. F., and Shih, D. Y. C. (1994). Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot., 56: 136-140.

Favere, V. T., Laus, R., Laranjeira, M. C., Martins, A. O., and Pedrosa, R. C. (2004). Use of chitosan microspheres as remedial material for acidity and iron (III) contents of coal mining wastewaters. Environ. Sci. Technol., 25: 861-866.

Filar, L. F. and Wirick, M.G. (1978). Bulk and solution properties of chitosan. In:Proceedings of the 1st Int. Conf. On chitin/chitosan. Muzzarelli. R. A. A. and Pariser, E. R. (Eds.).

Floury, J., Desrumaux, A., and Lardières, J. (2000). Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov. Food Sci. Emerg. Technol., 1: 127-134

Friberg, S. E., and Larsson, K. (1997). Food emulsions. New York.

Guibal, I., Saucedo, J., and Roussy, P. (1994). Uptake of uranyl ions by new sorbing polymers: discussion of adsorption isotherms and pH effect. React. Polym., 23: 147-156.

Hadwiger, L. A., and Loschke, D. C. (1981). Molecular communication in host-parasite interactions: hexosamine polymers (chitosan) as regulator compounds in race-specific and other interactions. Phytopatholog, 71: 756-762.

Hirano, S., Tanaka, Y., Hasegawa, M., Tobettto, K., and Nishioka, A. (1985). Effect of sulfated derivatives of chitosan on some blood coagulant factors. Carbohydr. Res., 137: 205-215.

Hirano, S. (1989). Production and application of chitin and chitosan in Japan. In: Chitin and Chitosan. Skjak-Braek, G., Anthonsen, T., Sandford, P. Eds., Elsevier Applied Science, London, UK.

Hon, K. N., and Samuel, P. M. (1995). Preparation and characterization of chitin and chitosan- a review. J. Aquat. Food Prod. Technol., 4: 27-52.

Inui, H., Tsujikubo, M., Yoshida, M., and Hirano, S. (1995). Low molecular weight chitosan stimulation of mitogenic response to platelet-derived growth factor in vascular smooth muscle cells. Biosci. Biotechnol. Biochem., 59: 2111-2114.

Ito, M. (1991). In vitro properties of a chitosan-bonded hydroxyapatite bone-filling paste. Biomaterials, 12: 41-45.

Jafari, S. M., He, Y., Bhandari, B. (2007) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng., 82: 478-488.

Jiang, Y. M., and Li, Y. B. (2000). Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chem., 73: 139-143.

Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M., and Kobayashi, E. (1995). Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci. Biotechnol. Biochem., 59: 786-790.

Kartal, S. N., and Imamura, Y. (2005). Removal of copper, chromium and arsenic from CCA-treated wood onto chitin and chitosan. Bioresour. Technol., 96: 389-392.

Kheadr, E. E., Vachon, J. F., Paquin, P., Fliss, I. (2002). Effect of dynamic high pressure on microbiological, rheological and microstructural quality of Cheddar cheese. Int. Dairy J., 12: 435-446.

Kienzle-Sterzer C. and Rha C. K. (1984). Solution properties of chitosan:Chitin conformation. In:chitin, chitosan and related enzymes. Zikakis, J. P. (Eds.) Axademic Press, Landon.

Kleing, A. R., and Middelberg, A. P. J. (1996) The Correlation of Cell Disruption with Homogenizer Valve Pressure Gradient Determined by Computational Fluid Dynamics. Chem. Eng. Sci., 51: 5103-5110.

Knorr D. (1982). Functional properties of chitin and chitosan. J. Food Sci., 47: 593-595.

Knorr, D. (1984). Use of chitinous polymers in food-A challenge for food research and development. Food Technol., 38: 85-97.

Knorr, D., Wampler, J. P., and Teutonico, R. A. (1985). Formation of prazine by chitin pyrolysis. J. Food Technol., 50: 1762-1763.

Knorr, D. (1986). Nutritional quality, food processing, and biotechnology aspects of chitin and chitosan: A Review. Process Biochem., 6:90.

Koide, S. S. (1998). Chitin-chitosan: Properties, benefits and risks. Nutr. Res., 18:1091-1101.

Kurita, K., Shimada, K., Nishiyama, Y., Shimojoh, M., and Nishimura, S. I. (1998). Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having alpha-mannoside branches. Macromolecules, 31: 4764-4769.

Lanciotti, R., Patrignani, F., Iucci, L., Guerzoni, M.E., Suzzi, G., Belletti, N., Gardini F. (2007). Effects of milk high pressure homogenization on biogenic amine accumulation during ripening of ovine and bovine Italian cheeses. Food Chem., 104:693-701.

Li, Q., Dunn, E. T., Grandmaison, E. W., and Goosen, M. F. A. (1997). Applications and properties of chitosan. pp. 3-29. In: Goosen, M. F. A., ed. Applications of chitin and chitosan, Technomic Publishing. Lancaster.

Lim, S. H., and Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res., 339: 313-319.

Liu, Y., Tang, J., Chen, X., and Xin. J. H. (2005).Decoration of carbon nanotubes with chitosan. Carbon, 43:3178-3180.

Macrae, R., Robinson, R. K., and Sadler, M. J. (1993). Encyclopaedia of food science food technology and nutrition. Academic press, New York.

Majeti, N. V., and Kumar, R. (2000). A review of chitin and chitosan applications. React. Funct. Polym., 46: 1-27.

Malette, W. G., Quigley, J., and Herbert, J. (1984). Method for the therapeutic occlusion. US Patent 4452785.

Mathivanan, N., Kabilan, V., and Murugsan, K. (1998). Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust. Can. J. Microbiol., 44: 646-651.

Mc-Kay, G., Ramprasad, G., and Mowli, P. P. (1986). Equilibrium studies for the adsorption of dyestuffs from aqueous-solutions by low-cost materials. Water Air Soil Pollut., 29: 273-283.

Methacanon, P., Prasitsilp, M., Pothsree, T., and Pattaraarchachai, J. (2003). heterogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr. Polym., 52:119-123.

Mhurchu, C. N., and Poppitt, S. D. (2004). The effect of the dietary supplement, chitosan, on body weight: A randomised controlled trial in 250 overweight and obese adults. Int. J. Obes., 28: 1149-1156.

Minke R. and Blackwell J. (1978). The structure of a-chitin. J. Mol. Biol., 120: 67–81.
Mitra, S., Gaur, U., Ghosh, P. C., and Maitra, A. N. (2001). Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control Release, 74: 317-323.

Muzzarelli, R. A. A., Barontini, G. and Rocchetti, R (1976). Immobilized enzymes on chitosan columns: Alpha-chymotrypsin and acid phosphatase. Biotechnol. Bioeng., 18: 1445-1454.

Muzzarelli, R. A. A. (1977). In: “Chitin”. Muzzarelli, R. A. A. Eds. Pergamon Press, Oxford. New York, Toronto, Sydney, Paris, Frankfurt.

Muzzarelli, R. A. A., and Roberto, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym., 5: 461-472.

Naoji, K., Nobuhide, T., Takayuki, S., and Kaori, T. (2000). A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr. Res., 324: 268-274.

Napper, D. H. (1983). Polymeric stabilization of colloidal dispersions. New York:Academic Press.

Nishimura, S. I., Kai, H., Shinada, K., Yoshida, T., Tokura, S., Kurita, K., Nakashima, H., Yamamoto, N., and Uryu, T. (1998). Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydr. Res., 306: 427-733.

No, H. K., and Meyers, S. P. (1989). Crawfish chitosan as a coagulant in recovery of organic compounds from seafood processing streams. J. Agric. Food Chem., 37: 580-583.

Noishiki, N., Kuga, S., Wada, M., Hori, K. and Nishiyama, Y. (2004). Guest selectivity in complexation of β-chitin. Macromolecules, 37: 6839–42.

Onsoyen, E., and Skaugrud, O. (1990). Metal recovery using chitosan. J. Chem. Technol. Biotechnol., 49: 395-404.


Paquin, P. (1999). Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides. Int. Dairy J., 9: 329-335.

Percot, A., Viton, C., and Domard, A. (2003) Optimization of chitin extraction from shrimp shells. Biomacromol, 4: 12-18.
Phipps, L. W. (1971). Mechanism of oil droplet fragmentation in high homogenizers, Nature, 233:617-619.

Piron, E., and Domard, A. (1997). Interaction between chitosan and uranyl ions. Part 1. Role of physicochemical parameters. Int. J. Biol. Macromol., 21: 327-335.

Piron, E., and Domard, A. (1998). Interaction between chitosan and uranyl ions. Part 2. Mechanism of interaction. Int. J. Biol. Macromol., 22: 33-40

Poulicek, M., Voss-Foucart, M. F., and Jeuniaux, C. (1986). Chitinoproteic complexes and mineralization in mollusk skeletal structures. In:“Chitin in Nature and Technology”. Muzzarelli, R. A. A., Jeuniaux, C., Gooday, G. W. Eds. Plenum Press, New York and London.

Prado, A. G. S., Torres, J. D., Faria, E. A., and Dias, S. C. (2004). Comparative adsorption studies of indigo carmine dye on chitin and chitosan. J. Colloid Interface Sci., 277: 43-47.

Prashanth, H. K. V., Kitture, F. S., and Tharanathan, R.N. (2002). Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr. Polym., 50: 27-33.

Qin, C. Q., Du, Y. M., Xiao, L., Li, Z., and Gao, X. H. (2001). Enzymatic preparation of water-soluble chitosan and their antitumor activity. Int. J. Biol. Macromol., 31: 111-117.

Qin, C. Q., Zhou, B.,. Zeng, L. T Z,. Zhang, H., Liu, Y., Du, Y. M., and Xiao, L. (2003). The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem., 84: 107-115.

Rabea, E. I., Badawy, M. E., Stevens, C. V., Smagghe, G., and Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4: 1457-1465.

Rao, S. B., and Sharma, C. P. (1997). Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J. Biomed. Mater. Res., 34: 21-28.

Reiss, M., Heibges, A., Metzger, J., and Hartmeier, W. (1998). Determination of BOD-values of starch-containing waste water by a BOD-biosensor. Biosens. Bioelectron., 13: 1083-1090.

Rhoades, J., and Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and feeds. Appl. Environ. Microbiol., 66: 80-86.

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 31: 603-632.

Roller, S., and Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol., 47: 67-77.

Ruiz-Herrera J. (1978). The distribution and quantitative importance of chitin in fungi. In: Chitin and chitosan Proceedings of the First Intermational Conference on Chitin and Chitosan Muzzarelli, R. A. A. and Pariser, E. R. Eds. MIT Sea Grant Program, Cambridge, Mass.

Ryan, C. A. (1987). Oligosaccharides signalling in plants. Annu. Rev. Cell Biol., 3: 295-317.

Ryan, C. A. (1988). Oligosacharides as recognition signals for the expression of defensive genes in plants. Biochemistry, 27: 8879-8883.

Sarasam, A. R., Brown, P., Khajotia, S. S., Dmytryk, J. J., and Madihally, S. V. (2007). Antibacterial activity of chitosan-based matrices on oral pathogens. J. Mater. Sci. Mater. Med., 19: 1083-1090

Schulz, M. B., Daniels, R. (2000). Hydroxypropylmethylcellulose (HPMC) as emulsifier for submicron emulsions influence of molecular weight and substitution type on the droplet size after high-pressure homogenization.2000. Eur. J. Pharm. Biopharm., 49: 231-236.

Schulz, P. C., Rodriguez, M. S., Del Blanco, L. F., Pistonesi, M., and Agullo, E. (1998). Emulsification properties of chitosan. Colloid Polym., Sci. 276: 1159-1165.

Shahabeddin, L., Berthod, F., Damour, O., and Collombel, C. (1990). Characterization of skin reconstructed on a chitosan-cross-linked collagen-glycosaminoglycan matrix. Skin Pharmacol., 3: 107-114.

Shahidi, F., Vidana-Arachchi, J. K., and Jeon, Y. J. (1999). Food applications of chitin and chitosan. Trends Food Sci. Technol., 10: 37-51.

Shimahara, K., Ohkouchi, K., and Ikeda, M. (1982). A new isolation method of crustacean chitin using a proteolytic bacterium Pseudomonas maltophilia. In: Chitin and Chitosan, Proceedings of second international Conference on Chitin and Chitosan. Ed. by Hirano, S. and Tokura, S. Eds. The Japanese Society of Chitin and Chitosan. p.10-14.

Stanley, W. L., Watters, G.. G.., Chan, B., and Mercer, J. M. (1975). Lactase and other enzymes bound to chitin with glutaraldehyde. Biotechnol. Bioeng., 17: 315-326.

Suzuki, K., Mikami, T., Okawa, Y., Tokoro, A., Suzuki, S., and Suzuki, M. (1986). Antitumor effect of hexa-N-acetylchitohexaose and chitohexose. Carbohydr. Res., 151: 403-408.

Synowiecki, J., and Al-Khateeb, N. A. A. Q. (1997). Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chem., 60: 605-610.

Synowiecki, J., and Al-Khateeb, N. A. A. Q. (2003). Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food. Sci. Nutr., 43: 145-171.

Tarsi, R., Muzzarelli, R. A., Guzman C.A., Pruzzo C. (1997). Inhibition of Streptococcus mutans adsorption to hydroxyapatite by low-molecular-weight chitosans. J Dent Res., 76: 665-672.

Tesch, S., Gerhends, Ch., and Schubert, H. (2002). Stabilization of emulsion by OSA starches. J. Food Eng., 54: 167-174.

Toei, K., and Kohara, T. (1976). A conductometric method for colloid titrations. Anal. Chim. Acta, 83: 59-65.

Tsai, G. J,. and Su, W. H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot., 62: 239-243.

Vahouny, G. V., Satchithanandam, S., Cassidy, M. M., Lightfoot, F. B., and Furda, I. (1983). Comparative effect of chitosan and cholestyramine on lymphatic absorption of lipids in rats. Am. J. Clin. Nutr., 38: 278-284.

Van Nieuwenhuyzen, W., and Szuhaj, B. F. (1998). Effects of lecithin and proteins on the stability of emulsions. Fett-Lipid, 100: 282-291.

Walstra, P. (1983). Formation of emulsions, in Encyclopedia of Emulsion Technology, Vol.1, basic theory, Becher P. eds, Marcel Dekker, Inc., New York, 369-404.

Wang, Y., Zhou, P. G., Yu, J. X., Pan, X. R., Wang, P. P., Lan, W. Q., and Tao, S. D. (2007). Antimicrobial effect of Chitooligosaccharides Produced by Chitosanase from Pseudomonas CUY8. Asia Pac. J. Clin. Nutr., 16: 174-177.

Xie, W. M., Xu P. X., Wang, W., and Liu, Q. (2002). Preparation and antibacterialactivity of a water-soluble chitosan derivative. Carbohydr. Polym., 50: 35-4.

Yamada, K., Akiba, Y., Shibuya, T., Kashiwada, A., Matsuda, K., and Hirata, M. (2005).Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads. Biotechnol. Prog., 21: 823-829.

Zanina, A., Vilesov, A., and Budtova, T. (2002). Shear-induced solvent release from gel particles: application to drug-delivery systems. Int. J. Pharm., 242: 137-146.

Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M. and Zhang, X. F. (2002). Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials., 23: 2641-2648.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以幾丁聚醣和卵磷脂高壓均質製備次亞麻油酸-維生素E 單/雙層奈米乳滴乳化液之研究
2. 以幾丁聚醣或幾丁聚醣和卵磷脂為乳化劑製備次亞麻油酸 /亞麻油酸奈米乳滴乳化液及其性質之研究
3. 以幾丁聚醣或混合幾丁聚醣及卵磷脂為乳化劑製備南瓜籽油奈米乳滴乳化液及其性質之研究
4. 高濃度蔗糖溶液中O/W型食用精油乳化液之製造技術
5. 不同HLB值乳化劑對草本精油乳化液之安定性與抗菌性的影響
6. 高類胡蘿蔔素及高抗氧化活性甘藷葉品種之篩選及其凍乾粉末儲存安定性之探討
7. 資產累積方案對弱勢家庭青年脫貧之研究─以財團法人台灣兒童暨家庭扶助基金會青年自立釣竿計畫為例
8. 不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研究
9. 均質速度與預乳化溫度對酪蛋白鈉、濃縮乳清蛋白和牛油乳化液乳化安定性之影響及其對牛半腱肌(M.Semitendinosus)視覺大理石紋與食用特性之影響
10. 公部門對外籍勞工查察工作之績效評析-以彰化縣為例
11. 我國合併報表編製規範與實質控制效果之研究-以某上市汽車公司為例
12. 高階管理團隊層級式組織結構與企業績效之關聯
13. 瑜亮之爭─稅務訴訟代理人訴訟績效差異之研究
14. 員工分紅費用化後薪酬結構、人力資本與研發投資之關聯性
15. 不同風險屬性基金投資人交易行為之研究