(3.236.214.19) 您好!臺灣時間:2021/05/09 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳佑禎
研究生(外文):You-Jhen Chen
論文名稱:活化作用與表面奈米合金催化劑對碳材儲氫之影響
論文名稱(外文):A Study on the Effect of Hydrogen Storages of Carbon Materials by Activation Processing and Nano-Scale Alloys Oxide
指導教授:苗新元
指導教授(外文):Hsin-Yuan Miao
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:175
中文關鍵詞:備長炭奈米碳管儲氫活化處理
外文關鍵詞:溢出效應White charcoalCarbon nanotubeHydrogen storageActivation processingSpill-over effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:480
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:177
  • 收藏至我的研究室書目清單書目收藏:0
碳是地球上佔有比例相當多的元素之ㄧ,且碳材具有高的比表面積以利氫分子的吸附。其中,奈米碳管具有儲氫速率快、儲放氫過程為完全可逆、放氫溫度適當與儲氫壽命長等優點;而備長炭製造成本低廉(相對於奈米碳管),且具有高比表面積的特性與容易取得等優勢。故本研究根據備長炭 ( White Charcoal ) 、多壁奈米碳管 ( MWCNTs ) 等碳系材料所呈現出來的特殊性質,加上物理活化與化學活化的改質並覆載合金金屬氧化物來產生溢出效應 ( Spill-Over Effect ) 現象以提升氫之吸附能力,若此類碳材若能在儲氫上善加利用將對人類未來可產生無限大的貢獻。
由結果發現在物理活化方面,備長炭無論經由氣氛爐或是管狀爐的物理活化後,比表面積均有所提昇;其中,氣氛爐可提昇24.33 %,管狀爐可提昇66.19 %。而奈米碳管利用管狀爐的活化前後比表面積提升約66.75 %。
在儲氫方面將單一金屬氧化物附著於備長炭上得到最佳儲氫量約0.305 ( wt% ) ;比原始備長炭儲氫量0.231 ( wt% ) 約可提昇 32.03 %。當金屬氧化物增加到二位元金屬氧化物合金附著於備長炭上時,最佳儲氫量為0.54 ( wt% ),比原始備長炭提昇133.77 %。
Carbon is one of the abundant elements on the earth. And, the properties of high specific surface of carbon materials advantage them for the applications of adsorption of hydrogen molecules. Among them, especially, carbon nanotubes (CNTs) show its excellent talent on quick speed and reversible reaction of uptake and degas hydrogen on proper temperature, and long lasting duration. Besides, White charcoal (WC) are considered as the prospect candidate for hydrogen storages owing to their low cost and easy to mass production.
For the purpose of hydrogen storages with WC, activation (for raising specific surface) and modification (for promoting adsorption) are the main concern in this study. Physical and chemical processing were included in activation, and several kind of nano-scale alloys oxide coating were the catalyst ( producing Spill-Over effect on WC surface ) in modification processing.
The results showed that WC make a great progress in specific surface raising in physical activation stage, no matter in high temperature oven purging 24.33 % or in tube oven purging 66.19 %. Especially, CNTs could get a 66.75 % progress in tube oven purging.
On the other hand, modification of nano-scale alloys oxide catalyst make a great progress on hydrogen uptake rate. It show 0.23 %, 0.30 % and 0.54 % when WC untreated, treated with single metal oxide and treated with nano-scale alloys oxide catalyst, individually.
目 錄
中文摘要
Abstract
致謝
目錄
表目錄
圖目錄

第一章 緒論………………………………………………………... 1
1-1 前言………………………………………………..... 1
1-2 研究動機與目的…………………………………..... 4
1-3 奈米碳管儲氫應用文獻回顧……………………..... 5

第二章 文獻回顧…………………………………………..…....... 10
2-1 氫經濟...................................................................... 10
2-1.1 產氫……………………………………….………. 11
2-1.2 燃料電池……………………………….…………. 12
2-1.3 儲氫技術………………………………….………. 13
2-2 吸附概論................................................................... 16
2-3 金屬儲氫材料........................................................... 18
2-3.1 金屬合金的歷史...................................................... 18
2-3.2 儲氫材料.................................................................. 18
2-3.3金屬氫化物熱力學................................................... 20
2-3.4本研究之儲氫材料................................................... 23
2-4 碳系儲氫材料........................................................... 25
2-4.1奈米碳管................................................................... 25
2-4.2奈米碳管之結構....................................................... 26
2-4.3奈米碳纖................................................................... 27
2-4.4備長炭及竹炭........................................................... 28
2-4.5木質炭化製程........................................................... 29
2-5 碳材料活化處理....................................................... 30
2-5.1 化學活化…………………………………….……. 31
2-5.2 物理活化……………………………………….…. 31
2-6 奈米材料的合成…………………………….…….. 33
2-6.1 沉澱法………………………………………….…. 33
2-6.2 噴霧法…………………………………………….. 35
2-6.3 溶膠-凝膠法............................................................. 37
2-6.4 水熱法……………………………………….……. 37
2-6.5 輻射化學合成法...................................................... 38
2-7 溢出效應................................................................... 39
2-8 理論分析奈米碳管儲氫量....................................... 40
2-8.1 簡單幾何估算.......................................................... 40
2-8.2 密度泛函方程理論.................................................. 41
2-8.3 巨正則蒙第卡羅...................................................... 42
2-8.4 分子動力學.............................................................. 43
2-9 奈米碳管儲氫量測................................................... 44

第三章 實驗方法與分析…………………………………….…… 64
3-1 實驗架構………………………………………….. 64
3-2 實驗藥品………………………………………….. 64
3-3 金屬對氫的作用………………………………….. 66
3-4 碳材比表面積的改質…………………………….. 67
3-5 實驗方法及步驟………………………………….. 68
3-5.1 實驗方法……………………………………….…. 68
3-5.2 實驗步驟……………………………………….…. 69
3-6 實驗儀器介紹……………………………………... 72
3-6.1 物理吸附儀………………………………….……. 72
3-6.2 BET吸附理論………………………………….... 73
3-6.3場發射掃描式電子顯微鏡........................................ 74
3-6.4 X-ray粉末繞射儀...................................................... 75
3-6.5體積法儲氫量測系統................................................ 76
3-6.5.1體積法儲氫量測理論............................................. 76
3-6.5.2體積法系統架構..................................................... 78

第四章 實驗結果與結論…………………………………………. 93
4-1 備長炭與竹炭基本儲氫能力.................................. 93
4-1.1備長炭改質................................................................ 94
4-2 單一金屬之備長炭儲氫分析.................................... 94
4-2.1 備長炭之SEM表面形貌分析…………………….. 94
4-2.2 備長炭之物理吸附儀分析………………………... 96
4-2.3 備長炭之儲氫能力分析…………………………... 97
4-2.4 結論………………………………………………... 99
4-3 備長炭之物理活化改質分析...................................100
4-3.1備長炭之物理活化改質分析結論...........................102
4-4 奈米碳管之改質.......................................................103
4-5 備長炭之化學活化改質分析……………………...104
4-5.1 表面SEM形貌分析……………………………….104
4-5.2 X-Ray結構分析………………………………….107
4-5.2.1 X-Ray結構分析 (氧化鎂鈷)……………………107
4-5.2.2 X-Ray結構分析 (氧化鎂鎳)……………………110
4.5-2.3 X-Ray結構分析 (氧化鎂鋯)……………………111
4-5.2.4 X-Ray結構分析 (氧化鎂鉻)……………………111
4-5.2.5結論………………………………………………113
4-6 備長炭二元合金儲氫動力學.................................114
4-6.1 結論........................................................................116

第五章 總結與未來工作................................................................164
5-1 總結……………………………………………..164
5-2 未來工作………………………………………..165

參考文獻................................................................................................166
附錄........................................................................................................173
















表 目 錄
表2-1 燃料電池種類及用途................................................................. 47
表2-2 儲氫技術優缺點比較................................................................. 47
表2-3 物理吸附與化學吸附之差異..................................................... 48
表2-4 各類二元合金之結構及代表元素............................................. 48
表2-5 奈米碳管之幾何參數................................................................. 49
表3-1氦氣壓縮係數表........................................................................... 81
表3-2氫氣壓縮係數表........................................................................... 81
表4-1備長炭活化處理後的孔隙分析.................................................112
表4-2備長炭儲氫量與比表面積比照表..............................................113
表4-3備長炭的比表面積 (A)未經處理備長炭
(B)備長炭使用氣氛爐做物理活化
(C)備長炭使用管狀爐做物理活化
(D)備長炭使用超音波破碎後的物理活化...................114
表4-4 奈米碳管的比表面積(A)未經處理奈米碳管
(B)改質過後的奈米碳管.......................114
表4-5 備長炭經硝酸鎂鈷活化處理 3M 粒徑...................................140
表4-6 備長炭經硝酸鎂鈷活化處理 2M 粒徑...................................141
表4-7 備長炭經硝酸鎂鈷活化處理 1M 粒徑...................................142
表4-8 備長炭附著奈米合金 MgCo 0.5M 粒徑.................................143
表4-9 備長炭附著奈米合金 MgCo 0.1M 粒徑.................................144
表4-10 備長炭附著奈米合金 MgNi 3M 粒徑..................................145
表4-11 備長炭附著奈米合金 MgNi 2M 粒徑..................................146
表4-12 備長炭附著奈米合金 MgNi 1M 粒徑..................................147
表4-13 備長炭附著奈米合金 MgNi 0.5M 粒徑...............................148
表4-14 備長炭附著奈米合金 MgNi 0.1M 粒徑...............................149
表4-15 備長炭附著奈米合金 MgZr 3M 粒徑..................................150
表4-16 備長炭附著奈米合金 MgZr 2M 粒徑..................................151
表4-17 備長炭附著奈米合金 MgZr 1M 粒徑..................................152
表4-18 備長炭附著奈米合金 MgZr 0.5M 粒徑...............................153
表4-19 備長炭附著奈米合金 MgZr 0.1M 粒徑...............................154
表4-20 備長炭附著奈米合金 MgCr 3M 粒徑..................................155
表4-21 備長炭附著奈米合金 MgCr 2M 粒徑..................................156
表4-22 備長炭附著奈米合金 MgCr 1M 粒徑..................................157
表4-23 備長炭附著奈米合金 MgCr 0.5M 粒徑...............................158
表4-24 備長炭附著奈米合金 MgCr 0.1M 粒徑...............................159
表4-25 各類金屬氧化物儲氫量..........................................................162
表4-26 各類金屬氧化物晶粒尺寸......................................................162
圖 目 錄
圖1-1 為各種儲氫材料其儲氫密度與儲氫質量比之預測圖.............. 8
圖1-2 將4kg的氫以各種不同的存儲方式所得之體積差異.............. 8
圖1-3 全球初級能源使用的含碳量變化歷程...................................... 9
圖2-1 (a)2003到2004年日本NEC公司發表以燃料電池為動力筆記 型電腦(b)以為氫燃料為動力的公車.................................................... 50
圖2-2 氫能系統由為左產氫-儲氫-應用............................................... 51
圖2-3 燃料電池做動示意圖................................................................. 51
圖2-4 燃料電池模組............................................................................. 52
圖2-5 各種儲氫技術的發展階段......................................................... 52
圖2-6 吸附現象示意圖......................................................................... 53
圖2-7 氫化物家族圖............................................................................. 53
圖2-8 左為理想等溫吸附曲線(PCI);右為van’t Hoff plot曲線圖..... 54
圖2-9 碳的三種同素異形體................................................................. 54
圖2-10 奈米碳管的平面結構圖........................................................... 55
圖2-11 扶手椅形奈米碳管................................................................... 56
圖2-12 鋸齒形奈米碳管....................................................................... 56
圖2-13 對掌形奈米碳管....................................................................... 56
圖2-14 奈米碳纖生長機制圖............................................................... 57
圖2-15 不同結構之奈米碳纖SEM圖:(a)片狀堆疊結構(b)魚骨狀堆疊 結構(c)柱狀結構...................................................................... 57
圖2-16 碳化窯剖視圖........................................................................... 58
圖2-17 炭材不規則排列結構之示意圖............................................... 58
圖2-18 炭化溫度對於炭材結構之變化............................................... 59
圖2-19 奈米碳管覆載鹼金屬元素....................................................... 59
圖2-20 溢出效應機制圖....................................................................... 60
圖2-21 由120碳及24個氫原子所組成的奈米碳管,氫氟酸分子會沿管內壁移動.............................................................................. 60
圖2-22 TEM圖單壁奈米碳管受凡得瓦力形成束狀排列................ 61
圖2-23 典型的氫分子吸附在三角排列的奈米碳管中的示意圖....... 61
圖2-24 在溫度77k、壓力15MPa環境下對不同結構參數單壁奈米碳管進行儲氫模擬...................................................................... 62
圖2-25 在5x5的單壁奈米碳管內以20ev的動能植入氫原子(a)為側視 圖(b)為府視圖,顯示氫分子在碳管形成液態狀.................... 62
圖2-26 高壓熱重分析儀結構圖........................................................... 63
圖2-27 以電化學法量測奈米碳管儲氫量........................................... 63
圖3-1 單一金屬的備長炭實驗流程................................................... 82
圖3-2 備長炭之物理活化改質…………………………………...… 83
圖3-3 奈米碳管之改質....................................................................... 84
圖3-4 備長炭之化學活化改質........................................................... 85
圖3-5 物理吸附儀............................................................................... 86
圖3-6 場發射掃描式電子顯微鏡....................................................... 87
圖3-7 電子束與試片產生交互做用示意圖....................................... 88
圖3-8 粉末繞射儀(X-Ray).................................................................. 88
圖3-9 特徵X-Ray產生示意圖............................................................ 89
圖3-10 布拉格定律示意圖................................................................... 89
圖3-11 Sievert’s-type儲氫量測結構圖............................................... 90
圖3-12 自行組裝之Sievert’s-type儀器圖............................................ 91
圖3-13 (a)管狀爐(b)氣氛爐............................................................................ 92
圖4-1 SEM (a)未經改質的備長炭
(b)未經改質的竹炭........................................................115
圖4-2 SEM未經改質的奈米碳管......................................................116
圖4-3 備長炭與竹炭儲氫動力曲線圖..............................................117
圖4-4 備長炭附著硝酸鎂的 SEM : (a) 1M (b) 2M……………...118
圖4-5 備長炭附著硝酸鎂的 SEM 3M……………………………..119
圖4-6 備長炭附著氫氧化鉀的 SEM : (a) 1M (b) 2M.....................120
圖4-7 備長炭附著氫氧化鉀的 SEM 3M............................................121
圖4-8 備長炭附著硝酸鋅的 SEM : (a) 1M (b) 2M.........................122
圖4-9 備長炭附著硝酸鋅的 SEM 3M................................................123
圖4-10 備長炭附著氯氧化鋯的 SEM : (a) 1M (b) 2M...................124
圖4-11 備長炭附著氯氧化鋯的 SEM 3M…………………………..125
圖4-12 備長炭附著奈米合金 MgCo SEM : (a) 3M (b) 2M............126
圖4-13 備長炭附著奈米合金 MgCo SEM : (a) 1M (b) 0.5M.........127
圖4-14 備長炭附著奈米合金 MgCo SEM : 0.1M.............................128
圖4-15 備長炭附著奈米合金 MgNi SEM : (a) 3M (b) 2M............129
圖4-16 備長炭附著奈米合金 MgNi SEM : (a) 1M (b) 0.5M.........130
圖4-17 備長炭附著奈米合金 MgNi SEM : 0.1M..............................131
圖4-18 備長炭附著奈米合金 MgZr SEM : (a) 3M (b) 2M............132
圖4-19 備長炭附著奈米合金 MgZr SEM : (a) 1M (b) 0.5M.........133
圖4-20 備長炭附著奈米合金 MgZr SEM : 0.1M..............................134
圖4-21 備長炭附著奈米合金 MgCr SEM : (a) 3M (b) 2M............135
圖4-22 備長炭附著奈米合金 MgCr SEM : (a) 1M (b) 0.5M.........136
圖4-23 備長炭附著奈米合金 MgCr SEM : 0.1M..............................137
圖4-24 備長炭經硝酸鎂鈷活化處理整體 X-Ray 繞測圖................138
圖4-25 備長炭經硝酸鎂鎳活化處理整體 X-Ray 繞測圖................138
圖4-26 備長炭經硝酸鎂鋯活化處理整體 X-Ray 繞測圖................139
圖4-27 備長炭經硝酸鎂鉻活化處理整體 X-Ray 繞測圖................139
圖4-28 備長炭經硝酸鎂鈷活化處理 X-Ray 繞測圖 : 3M..............140
圖4-29 備長炭經硝酸鎂鈷活化處理 X-Ray 繞測圖 : 2M..............141
圖4-30 備長炭經硝酸鎂鈷活化處理 X-Ray 繞測圖 : 1M..............142
圖4-31 備長炭經硝酸鎂鈷活化處理 X-Ray 繞測圖 : 0.5M...........143
圖4-32 備長炭經硝酸鎂鈷活化處理 X-Ray 繞測圖 : 0.1M...........144
圖4-33 備長炭經硝酸鎂鎳活化處理 X-Ray 繞測圖 : 3M..............145
圖4-34 備長炭經硝酸鎂鎳活化處理 X-Ray 繞測圖 : 2M..............146
圖4-35 備長炭經硝酸鎂鎳活化處理 X-Ray 繞測圖 : 1M..............147
圖4-36 備長炭經硝酸鎂鎳活化處理 X-Ray 繞測圖 : 0.5M...........148
圖4-37 備長炭經硝酸鎂鎳活化處理 X-Ray 繞測圖 : 0.1M...........149
圖4-38 備長炭經硝酸鎂鋯活化處理 X-Ray 繞測圖 : 3M..............150
圖4-39 備長炭經硝酸鎂鋯活化處理 X-Ray 繞測圖 : 2M..............151
圖4-40 備長炭經硝酸鎂鋯活化處理 X-Ray 繞測圖 : 1M............152
圖4-41 備長炭經硝酸鎂鋯活化處理 X-Ray 繞測圖 : 0.5M...........153
圖4-42 備長炭經硝酸鎂鋯活化處理 X-Ray 繞測圖 : 0.1M...........154
圖4-43 備長炭經硝酸鎂鉻活化處理 X-Ray 繞測圖 : 3M..............155
圖4-44 備長炭經硝酸鎂鉻活化處理 X-Ray 繞測圖 : 2M..............156
圖4-45 備長炭經硝酸鎂鉻活化處理 X-Ray 繞測圖 : 1M..............157
圖4-46 備長炭經硝酸鎂鉻活化處理 X-Ray 繞測圖 : 0.5M...........158
圖4-47 備長炭經硝酸鎂鉻活化處理 X-Ray 繞測圖 : 0.1M...........159
圖4-48 備長炭附著硝酸鎂鈷儲氫動力曲線圖..................................160
圖4-49 備長炭附著硝酸鎂鎳儲氫動力曲線圖..................................160
圖4-50 備長炭附著硝酸鎂鋯儲氫動力曲線圖..................................161
圖4-51 備長炭附著硝酸鎂鉻儲氫動力曲線圖..................................161
參考文獻
1.A. Z&uttela, P. Sudana, Ph. Maurona, T. Kiyobayashib, Ch. Emmeneggera, L. Schlapbacha “Hydrogen storage in carbon nanostructures” International Journal of Hydrogen Energy 27 (2002) 203–212
2.Schlapbach, L. and A. Zuttel,2001,”Hydrogen-storage materials for mobile applications”,Nature,414,353-358
3.Iijima S., “Helical microtubules of graphitic carbon” , Nature, vol. 354 , (1991) pp.56-58.
4.Iijima S., Ichihashi T.,“Single-shell carbon nanotubes of 1-nm diameter”, Nature, vol. 363, (1993) pp.603-605
5.Dillon, A.C., et al., “Storage of hydrogen in single-walled carbon nanotubes”,Nature,386, (1997) 377-379
6.Ye, Y., et al., “Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes” , Applied Physics Letters,74, (1999) 2307-2309
7.Wu, X.B., et al., ”Hydrogen uptake by carbon nanotubes”, International Journal of Hydrogen Energy,25, (2000) 261-265
8.Zhu HW, C.L., Chen A, Mao ZQ, Xu CL, Xiao X, Wei BQ, Liang J, Wu DH. In: Mao ZQ, “Published by International Hydrogen Association, in Proceedings of the 13th World Hydrogen Energy Conference”. (2000) 560
9.P. Chen, X.W., J. Lin, and K. L. Tan, ”High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures”, Science 285, (1999) 91
10.Yang, R.T.,”Hydrogen storage by alkali-doped carbon nanotubes-revisited”, Carbon,38, (2000) 623-626
11.T., A.L.a.Y.R., “Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage”, Journal of Catalysis,206, (2002) 168-168
12.Leonardo Barreto , Atsutoshi Makihira , Keywan Riahi, “The Hydrogen Economy in the 21st Century:A Sustainable Development Scenario” March, 2002.
13.吳晟,2004, “明日綠色能源之星──氫能源”, 能源報導,33
14.燃料電池. cited; Available from: http://www.theregister.co.uk/2004/10/19/nec_notebook_fuel-cell/.
15.http://www.tfl.gov.uk/corporate/projectsandschemes/environment/2017.aspx, hydrogen BUS.
16.鄭玫玲, “金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究”. 九十六, 國立中央大學
17.黃啟裕,2008, “纖維素產氫技術在生質能源之發展”, 植物種苗生技,13,54-60
18.陳振源,2005, ”未來的綠色能源燃料電池”, 科學發展,391,63-65
19.台灣燃料電池資訊網. cited; Available from: http://www.tfci.org.tw/aboutfc/about1.asp.
20.kenis. cited; Available from: http://www.kenis.co.jp/fuel_cell/type.html
21.林怡均;圖片提供:漢氫科技公司林怡均,2006, “引發最大的使用能量儲氫材料特性研究”, 能源報導,8-10
22.曲新生,陳發林, “氫能技術”
23.Sorption. cited; Available from: http://www.cpeo.org/techtree/ttdescript/sorpt.htm
24.楊鉉台, “表面改質奈米碳管之合成技術及其提升儲氫能力之研究”. 2005, 元智大學.
25.近藤精一,石川達雄,安部郁夫, “吸附科學”
26.T. Gramham, Phil. Trans. Roy. Soc. London, 156 (1866) 399.
27.大角泰章, “水素吸藏合金”
28.G. Sandrock, J. Alloys Comp. , 293-295 (1999) 877.
29.J.H.N. van Vucht, F.A. Kuijpers, and H.C.A.M. Bruning, Philips Res. Repts., 25 (1970) 133.
30.F.A. Kuijpers, Philips Res. Repts., 28 (1973) 1.
31.J.J. Reilly and R.H. Wiswall, Inorg. Chem., 13 (1974) 218.
32.Zhou, L.,2005, ”Progress and problems in hydrogen storage methods”, Renewable and Sustainable Energy Reviews,9,395-408
33.Züttel, A., “Hydrogen storage methods”, Naturwissenschaften,91, (2004) 157-172
34.Principi, G., et al., “The problem of solid state hydrogen storage”, Energy,In Press, Corrected Proof,
35.DONG Hanwu , OUYANG Liuzhang, SUN Tai , ZHU Min , “Effect of ball milling on hydrogen storage of Mg3La alloy” JOURNAL OF RARE EARTHS, Vol. 26, No. 2, Apr. 2008, p. 303
36.Jin Guo, KunYang, Liqin Xu,Yixin Liu, Kaiwen Zhou, “Hydrogen storage properties ofMg76Ti12Fe12−xNix (x=0, 4, 8, 12) alloys by mechanical alloying”, International Journal of Hydrogen Energy 32 (2007) 2412 – 2416
37.LI Zhiniun , LIU Xiaopeng , HUANG Zru, , JIANG Lijun , and WANG Shumao, “Preparation and hydrogen sorption properties of Mg-Cu-Y-H systems”, RARE METALS Vol. 25, Spec. Issue , Dee 2006, p .89
38.HUANG Zhw , LJU Xkpeng , JUNG Lijun , and WANG Shumao, “Hydrogen storage properties of Zr, - ,Ti,Co intermetallic compound”, Vol. 25, Spec. Issue , Dee 2006, p .200
39.Y. Moriwaki, T. Gamo, H. Seri, T. Iwaki, “Electrode characteristics of C15-type laves phasealloys”, Journal of the Less Common Metals, Volumes 172-174, Part 3, 1991, Pages 1211-1218
40.S. Wakao, H. Sawa and J. Furukawa, “Effects of partial substitution and anodic oxidation treatment of Zr−V−Ni alloys on electrochemical properties ”, J. Less-Common Met. 172 (1991), p. 1219.
41.Soo-Ryoung Kim and Jai-Young Lee, “Electrode characteristics of C14-type Zr-based laves phase alloys”, J. Alloys Comp. 210(1994), p. 109.
42.王俊凱, “機械合金法合成鎂鎳基儲氫合金粉末之結構與特性研究”, 逢甲大學
43.張捷雲, “燒結條件對鈦鋯系儲氫合金性質之影響”, 台灣大學
44.張耀中, ”高儲氫量鎂基複合材料之研究”, 清華大學
45.S.N. Jenq, H.W. Yang, Y.Y. Wang, C.C. Wan, “Modification of Tio.35Zro.65Nil.2Vo.6Mno.2 alloy powder by electroless nickel coating and its influence on discharge performance”, Journal of Power Sources 57.( 1995 ) 111-118
46.J. Chen, S.X. Dou, H.K. Liu, “Hydrogen desorption and electrode properties of Zro.sTio.2(Vo.3Nio.6Mo. ! )2alloys”, Journal of Alloys and Compounds 256 (1997) 40-44
47.Thomas, K.M., "Hydrogen adsorption and storage on porous materials", Catalysis Today 120 (2007) 389–398
48.cited; Available from: http://cohesion.rice.edu/naturalsciences/smalley/emplibrary/allotropes.jpg.
49.Browning DJ, G.M., Laakeman JB, Mellor IM,Mortimer RJ, Turpin MC, “Proceedings of the 13th World Hydrogen Energy Conference, in Published by International Hydrogen Association”. (2000) : Beijing, China,.
50.Saito, R., G. Dresselhaus, and M.S. Dresselhaus, "Physcal Properties of Carbon Nanotubes",Imperial College Press (1998)
51.Dresselhaus, M.S.D., G.; Eklund, P.C. , Academic,, Fullerenes and Carbon Nanotubes. 1996.: San Diego.
52.Ebbesen, T.W., et al.,"Electrical conductivity of individual carbon nanotubes",Nature,382, (1996) 54-56
53.Strobel, R., et al., "Hydrogen storage by carbon materials", Journal of Power Sources,159, (2006) 781-801
54.Baker, R.T.K., “carbon nanofibers”, Encyclopedia of Materials: Science and Technology, (2005) 932.
55.s.subramoney,1998,"Novel Nano carbons-structure,properties,ans potential applications",Advanced Materials,15,1151
56.劉正宇,96, “竹炭的功能及其利用”, 台灣林業
57.黃國雄, et al.,2006,"土窯製炭時竹醋液之收集與其基本性質",台灣林業科學,21(4),547-557
58.陳明益, 機能性竹炭之研製. 2004.
59.Rodriguez-reinoso, F., “The role of carbon materials in heterogeneous catalysis”, Carbon,36,159
60.洪崇彬, 木質廢樣物之碳化材的基本性質與利用. 2002, 台灣大學.
61.Nevin Yalcın, Vahdettin Sevinc, “Studies of the surface area and porosity of activated carbons prepared from rice husks”, Carbon 38 (2000) 1943–1945
62.Usmani, T.H., et al., “Preparation and characterization of activated carbon from a low rank coal”, Carbon34, (1996) 77-82
63.Macia-Agullo, J.A., et al., ”Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation”, Carbon 42, (2004) 1367-1370
64.劉宗宏,2008, “以甘蔗渣製備高孔隙度/高表面積碳材料之資源再生利用及其吸附性質的探討”, 工程科技通訊,97
65.D. Lozano-Castello´, M.A. Lillo-Ro´denas, D. Cazorla-Amoro´s, A. Linares-Solano, “Preparation of activated carbons from Spanish anthracite I. Activation by KOH”, Carbon 39 (2001) 741–749
66.M.A. Lillo-Ro´denas, D. Lozano-Castello´, D. Cazorla-Amoro´s, A. Linares-Solano, “Preparation of activated carbons from Spanish anthracite II. Activation by NaOH”, Carbon 39 (2001) 751–759
67.M.A. Lillo-Ro´denas, D. Cazorla-Amoro´s, A. Linares-Solano, “U nderstanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism”, Carbon 41 (2003) 267–275
68.E. Raymundo-Pin˜ero, D. Cazorla-Amoro´sa, A. Linares-Solanoa, S. Delpeux, E. Frackowiak , K. Szostak , F. Be´guin, “High surface area carbon nanotubes prepared by chemical activation”, Letters to the editor / Carbon 40 (2002) 1597 –1617
69.A. Huidobro, A.C. Pastor, F. Rodr´ıguez-Reinoso, “Preparation of activated carbon cloth from viscous rayon Part IV. Chemical activation”, Carbon 39 (2001) 389–398
70.Zhenyu Ryu, Haiqin Rong, Jingtang Zheng, Maozhang Wang, Bijiang Zhang, “Microstructure and chemical analysis of PAN-based activated carbon fibers prepared by different activation methods”, Letters to the Editor / Carbon 40 (2002) 1131 –1150
71.I. MartõÂn-GulloÂn, R. Andrews, M. Jagtoyenb, F. Derbyshire, “PAN-based activated carbon fiber composites for sulfur dioxide conversion: influence of fiber activation method”, Fuel 80 (2001) 969-977


72.An-Hui Lu1 and Jing-Tang Zheng, “Study of Microstructure of High-Surface-Area Polyacrylonitrile Activated Carbon Fibers”, Journal of Colloid and Interface Science 236, 369–374 (2001)
73.Zhenyu Ryu, Jingtang Zheng, Maozhang Wang, Bijiang Zhang, “Nitrogen Adsorption Studies of PAN-Based Activated Carbon Fibers Prepared by Different Activation Methods”, Journal of Colloid and Interface Science 230, 312–319 (2000)
74.Jun’ichi Hayashi, Toshihide Horikawa, Isao Takeda, Katsuhiko Muroyama, Farid Nasir Ani, “P reparing activated carbon from various nutshells by chemical activation with KP reparing activated carbon from various nutshells by chemical
activation with ”, Carbon 40 (2002) 2381–2386.
75.M.A. Lillo-Ro´denas, D. Cazorla-Amoro´s, A. Linares-Solano, “Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism”, Carbon 41 (2003) 267–275.
76.F. RODRIGUEZ-REINOSO, M. MOLINA-SABIO , M. T. GONZALEZ, “THE USE OF STEAM AND CO2 AS ACTIVATING AGENTS IN THE PREPARATION OF ACTIVATED CARBONS”, Carbon, Vol. 33, No. 1, pp. 15-23, 1995
77.Hong-Ming Lin, “Department of Materials Engineering Tatung University”.
78.F.Fievet, J. P. Lagier et al., Solid State Ionics, 1989, 32/33: 198
79.http://www.soudoc.com/bbs/viewthread.php?tid=8539893
80.K. N. Clson and R. L. Cook, J. Am. Ceram. Soc., 1959, 38:499.
81.G. L. Messing, S.C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc., 76 (1993) 2707.
82.Yingwei Li and Ralph T. Yang, “Hydrogen Storage in Metal-Organic Frameworks by Bridged Hydrogen Spillover”, Published on Web 06/02/2006
83.Chien-Hung Chen, Chen-Chia Huang, “Enhancement of hydrogen spillover onto carbon nanotubes with defect feature”, Microporous and Mesoporous Materials 109 (2008) 549–559
84.Soo-Jin Park, Byung-Joo Kim, Young-Seak Lee, Min-Jun Cho, “Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers”, I N T E R NATIONAL JOURNAL OF HYDROGEN ENERGY
85.Frances H. Yang, Ralph T. Yang, “Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes”, Carbon 40 (2002) 437–444
86.Vahan V. Simonyan, J. Karl Johnson, “Hydrogen storage in carbon nanotubes and graphitic nanofibers”, Journal of Alloys and Compounds 330–332 (2002) 659–665

87.黃怡翔, 單壁奈米碳管儲氫性能之分子動力學模擬, 應用力學研究所. 2002, 台灣大學.
88.F. Lamari Darkrim, P. Malbrunot, G.P. Tartaglia, “Review of hydrogen storage by adsorption in carbon nanotubes”, International Journal of Hydrogen Energy 27 (2002) 193–202
89.Pederson, M.R. and J.Q. Broughton,, “Nanocapillarity in fullerene tubules”, Physical Review Letters,69, (1992) 2689
90.Calderon Moreno, J.M. and M. Yoshimura, ”Hydrothermal Processing of High-Quality Multiwall Nanotubes from Amorphous Carbon”, Journal of the American Chemical Society,123, (2001) 741-742
91.Hui-Ming Cheng, Quan-Hong Yang, Chang Liu, “Hydrogen storage in carbon nanotubes”, Carbon 39 (2001) 1447–1454
92.Seung Mi Lee and Young Hee Lee, “Hydrogen storage in single-walled carbon nanotubes” , VOLUME 76, NUMBER 20, 15 MAY 2000
93.Seung Mi Lee, Ki Soo Park, Young Chul Choi, Young Soo Park, Jin Moon Bok, Dong Jae Bae, Kee Suk Nahm, Yong Gak Choi, Soo Chang Yu, Nam-gyun Kim, Thomas Frauenheim, Young Hee Lee, “Hydrogen adsorption and storage in carbon nanotubes”, Synthetic Metals 113 2000.209–216
94.Qinyu Wang, and J. Karl Johnson, “Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption”, J. Phys. Chem. B, 1999, 103 (23), 4809-4813
95.M. Rzepka, and P. LampM. A. de la Casa-Lillo, “Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes”, J. Phys. Chem. B, 1998, 102 (52), 10894-10898
96.K.A. Williams, P.C. Eklund, “Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes”, Chemical Physics Letters 320_2000.352–358
97.Maruyama, S. and T. Kimuru, “MOLECULAR DYNAMICS SIMULATION OF HYDROGEN STORAGE IN SINGLE-WALLED CARBON NANOTUBES”, 2000 ASME International Mechanical Engineering Congress and Exhibit, Orland, November 5-11, 2000
98.Yuchen Ma, Yueyuan Xia, Mingwen Zhao, Ruijin Wang, Liangmo Mei, “Effective hydrogen storage in single-wall carbon nanotubes”, PHYSICAL REVIEW B, VOLUME 63, 115422
99.Yuchen Ma, Yueyuan Xia, Mingwen Zhao, Minju Ying, “Hydrogen storage capacity in single-walled carbon nanotubes”, PHYSICAL REVIEW B, VOLUME 65, 155430
100.K. Tada, S. Furuya, K. Watanabe, “Ab initio study of hydrogen adsorption to single-walled carbon nanotubes”, PHYSICAL REVIEW B, VOLUME 63, 155405
101.賈志準, 王志平, ”儲氫合金吸氫量測試方法”, October 2004
102.Nützenadel, C., et al., Electrochemical Storage of Hydrogen in Carbon Single Wall Nanotubes, in Science and Application of Nanotubes. 2002. p. 205-213.
103.Xuesong Lia, Hongwei Zhu, Cailu Xu, Zongqiang Mao, Dehai Wu, “Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method”, International Journal of Hydrogen Energy 28 (2003) 1251 – 1253
104.Wenyu Pan, Xianfeng Zhang, Shang Li, DehaiWu, Zongqiang Mao, “Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance”, International Journal of Hydrogen Energy 30 (2005) 719 – 722
105.Pan, W., et al., “Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance”, International Journal of Hydrogen Energy,30,719-722, 9 APRIL 2001
106.R Checchetto, G Trettel and A Miotello, “Sievert-type apparatus for the study of hydrogen storage in solids”, Meas. Sci. Technol. 15 (2004) 127–130
107.Bipin Kumar Gupta, R.S. Tiwari, O.N. Srivastava, “Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene”, Journal of Alloys and Compounds 381 (2004) 301–308
108.Tetsu Kiyobayashi, Hiroyuki T. Takeshita, Hideaki Tanaka, Nobuhiko Takeichi,
Andreas Zu¨ttel , Louis Schlapbach , Nobuhiro Kuriyama, “Hydrogen adsorption in carbonaceous materials–How to determine the storage capacity accurately”, Journal of Alloys and Compounds 330–332 (2002) 666–669
109.Shaijumon, M.M., et al., ”Synthesis of multi-walled carbon nanotubes in high yield using Mm based AB2 alloy hydride catalysts and the effect of purification on their hydrogen adsorption properties”, Nanotechnology 16 518-524
110.Wenyu Pan, Xianfeng Zhang, Shang Li, DehaiWu, Zongqiang Mao, “Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance”, International Journal of Hydrogen Energy 30 (2005) 719 – 722
111.C. Nützenadel, et al.,1999.,"Electrochemical Storage of Hydrogen in Nanotube Materials",Electrochemical and Solid-State Letters,2,30
112.Lee, S.M., et al., “Hydrogen adsorption and storage in carbon nanotubes", Synthetic Metals 113 2000.209–216
113.陳東瑩, 碳材作為儲氫材料之研究. 95年, 國立清華大學.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔