(3.231.29.122) 您好!臺灣時間:2021/02/26 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊家蓁
研究生(外文):Yang, Chia-Chen
論文名稱:補充達瑪烷次苷對耗竭運動後大鼠骨骼肌血管新生之影響
論文名稱(外文):Angiogenic Effect of Dammarane Oligo-Sapogenin in Rat Skeletal Muscle after Exhaustive Exercise
指導教授:郭家驊郭家驊引用關係
指導教授(外文):Kuo, Chia-Hua
口試委員:謝錦城王鶴森
口試委員(外文):Hsieh, Chin-ChengWang, Ho-Seng
口試日期:99/07/15
學位類別:碩士
校院名稱:臺北巿立體育學院
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:人參血管內皮生長因子血管生長素游泳耗竭發炎反應
外文關鍵詞:GinsengVEGFAngiopoietinsExhaustive swimmingInflammation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:488
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
研究目的欲瞭解補充達瑪烷次苷對耗竭運動後大鼠骨骼肌血管新生的影響,並進一步探討是否會改變耗竭運動後所產生的發炎反應。方法:100隻Sprague Dawley大鼠以體重平均分配方式分為:控制組、達碼烷次苷Dammarance Oligo-Sapogenin (DS) 組 (0.1 mg/kg BW)、DS20組 (20mg/kg BW)、DS60 (60mg/kg BW) 組、DS120組 (120mg/kg BW),又分成無運動與運動兩小組作為對照,各組n=10。以餵管方式介入不同劑量之達瑪烷次苷十週,運動組給予單次游泳耗竭運動後,立即取出肌肉組織。結果:游泳耗竭運動後Placebo組蹠肌中VEGF、PGC-1α、IL-6 mRNA皆呈顯著增加。而在補充達瑪烷次苷的組別耗竭運動後與Placebo exercise相較發現蹠肌中P-AMPK蛋白表現量在DS20組顯著增加 (p<.05),PGC-1α mRNA在DS20、DS60、DS120組則有下降的趨勢,並且蛋白表現量在DS60、DS120組是顯著下降的 (p<.05)。血管生長因子的部份,在耗竭運動後VEGF蛋白也與PGC-1α同樣在DS20、DS60、DS120組有下降的趨勢,Ang-1、Ang-2 mRNA、蛋白表現則沒有差異。此外,補充達瑪烷次苷的組別在耗竭運動後蹠肌與比目魚肌中IL-6 mRNA發炎程度是受到控制的。結論:補充十週達瑪烷次苷能減少運動誘導PGC-1α和VEGF增加的壓力反應,並有助於減緩耗竭運動所產生的發炎指標IL-6反應。肌肉微血管密度並未因長期服用達瑪烷次苷而影響。
Purpose: The present study was aimed to investigate the effect of Dammarance Oligo-Sapogenin (DS) on angiogenesis and inflammatory markers after exhaustive exercise in rat skeletal muscle. Methods: Sprague Dawley rats (n=100) were equally assigned into 5 groups: placebo, DS, DS20, DS60 and DS120. Respective doses of bioactive compound DS (0.1, 20, 60 and 120 mg/kg body weight) were orally administered to DS groups for 10-week. Ten rats from each group performed a single bout of exhaustive swimming exercise and then muscle tissue was excised immediately after exercise. Results: Plantaris muscle VEGF, PGC-1α and IL-6 mRNA expression were significantly (p<.05) increased after exhaustive exercise in placebo group. phospho-AMPK protein level in DS20 was significantly (p<.05) increased after exhaustive exercise compare to placebo exercised rats. PGC-1α mRNA expression showed decreased trend in DS20, DS60, DS120 groups after exercise compared to placebo exercise group, while PGC-1α protein was significantly (p<.05) decreased only in DS60 and DS120 groups. VEGF protein level was decreased in DS20, DS60 and DS120 groups after exhaustive exercise. We observed no change in Angiopoeitins (Ang-1 and Ang-2) mRNA and protein levels after exhaustive exercise in DS pre-treated rats compare to placebo exercise in both muscle types. However, increased IL-6 mRNA expression after exhaustive exercise was controlled in DS20, DS60 and DS120 pre-treated rats in both muscle types. Conclusions: This study results conclude that Dammarance Oligo-Sapogenin supplementation can attenuate stress response in PGC-1α and VEGF by exhaustive exercise. Furthermore, increased inflammatory marker IL-6 after exhaustive exercise was controlled in the DS pre-treated rats.
中文摘要 IV
Abstract VI
謝誌 VIII
目錄 IX
表目錄 XII
圖目錄 XII
第壹章 緒 論 1
第一節、研究背景 1
第二節、研究目的 3
第三節、研究的重要性 3
第四節、名詞操作型定義 3
第五節、研究範圍及限制 4
第貳章 相關文獻探討 5
第一節、血管新生及其調控 5
第二節、運動與血管新生 7
第三節、運動與發炎反應 9
第四節、人參萃取物─達瑪烷次苷 10
第參章 研究方法與研究步驟 13
第一節、動物的選取與照料 13
第二節、實驗設計 13
一、實驗流程 13
二、各組處置 14
三、運動方式 15
第三節、實驗材料與分析方法 15
一、實驗麻醉 15
二、肌肉組織RNA之純化 15
三、cDNA之反轉錄 15
四、基因表現量分析/Real-Time PCR 16
五、蛋白質分析/西方點墨法Western Blotting Analysis 16
六、檸檬酸合成酶活性 17
七、組織化學染色法 18
八、統計分析 18
第肆章 結果 19
一、補充達瑪烷次苷後的動物PGC-1α、血管新生因子以及發炎指標mRNA之分析 19
二、補充達瑪烷次苷的動物在耗竭運動後PGC-1α、血管新生因子以及發炎指標mRNA之分析 19
三、補充達瑪烷次苷後的動物AMPK、PGC-1α以及血管新生因子蛋白之分析 20
四、補充達瑪烷次苷的動物在耗竭運動後AMPK、PGC-1α以及血管新生因子蛋白之分析 21
五、補充達瑪烷次苷的動物在耗竭運動後檸檬酸合成酶活性之分析 22
六、AP (Alkaline Phosphatase) 組織化學染色 22
第伍章 討論 23
第一節、達瑪烷次苷對耗竭運動後AMPK的影響 23
第二節、達瑪烷次苷對耗竭運動後PGC-1α以及血管新生指標的影響 24
第三節、達瑪烷次苷對耗竭運動後檸檬酸合成酶活性的影響 26
第四節、達瑪烷次苷對耗竭運動後發炎指標的影響 27
第五節、達瑪烷次苷對肌肉中微血管密度的影響 28
第陸章 結論 29
參考文獻 30
圖與表說明 36
附錄 69

Ahn, J. Y., Choi, I. S., Shim, J. Y., Yun, E. K., Yun, Y. S., Jeong, G., et al. (2006). The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals. European Journal of Immunology, 36(1), 37-45.
Amaral, S. L., Papanek, P. E., & Greene, A. S. (2001). Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. American Journal of Physiology. Heart and Circulatory Physiology, 281(3), 1163-1169.
Arany, Z., Foo, S. Y., Ma, Y., Ruas, J. L., Bommi-Reddy, A., Girnun, G., et al. (2008). HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature, 451(7181), 1008-1012.
Asano, M., Kaneoka, K., Nomura, T., Asano, K., Sone, H., Tsurumaru, K., et al. (1998). Increase in serum vascular endothelial growth factor levels during altitude training. Acta Physiologica Scandinavica 162(4), 455-459.
Baar, K., Wende, A. R., Jones, T. E., Marison, M., Nolte, L. A., Chen, M., et al. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. the Federation of American Societies for Experimental Biology Journal 16(14), 1879-1886.
Bloor, C. M. (2005). Angiogenesis during exercise and training. Angiogenesis, 8(3), 263-271.
Breen, E. C., Johnson, E. C., Wagner, H., Tseng, H. M., Sung, L. A., & Wagner, P. D. (1996). Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. Journal of Applied Physiology, 81(1), 355-361.
Brodal, P., Ingjer, F., & Hermansen, L. (1977). Capillary supply of skeletal muscle fibers in untrained and endurance-trained men. The American Journal of Physiology, 232(6), 705-712.
Brown, M. D., & Hudlicka, O. (2003). Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis, 6(1), 1-14.
Cabral de Oliveira, A. C., Perez, A. C., Merino, G., Prieto, J. G., & Alvarez, A. I. (2001). Protective effects of Panax ginseng on muscle injury and inflammation after eccentric exercise. Comparative Biochemistry and Physiology. Toxicology and Pharmacology, 130(3), 369-377.
Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249-257.
Chan, M. H., Carey, A. L., Watt, M. J., & Febbraio, M. A. (2004). Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(2), 322-327.
Choi, S., Liu, X., Li, P., Akimoto, T., Lee, S. Y., Zhang, M., et al. (2005). Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running: evidence of increased cell proliferation. Journal of Applied Physiology, 99(6), 2406-2415.
Cross, M. J., Dixelius, J., Matsumoto, T., & Claesson-Welsh, L. (2003). VEGF-receptor signal transduction. Trends in Biochemical Sciences, 28(9), 488-494.
Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., et al. (1996). Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 87(7), 1161-1169.
Di Meo, S., & Venditti, P. (2001). Mitochondria in exercise-induced oxidative stress. Biological Signals and Receptors, 10(1-2), 125-140.
Dumont, D. J., Gradwohl, G., Fong, G. H., Puri, M. C., Gertsenstein, M., Auerbach, A., et al. (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes and Development, 8(16), 1897-1909.
Egginton, S., Hudlicka, O., Brown, M. D., Walter, H., Weiss, J. B., & Bate, A. (1998). Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle. Journal of Applied Physiology, 85(6), 2025-2032.
Fumarola, C., & Guidotti, G. G. (2004). Stress-induced apoptosis: toward a symmetry with receptor-mediated cell death. Apoptosis, 9(1), 77-82.
Gale, N. W., & Yancopoulos, G. D. (1999). Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes and Development, 13(9), 1055-1066.
Gavin, T. P., Drew, J. L., Kubik, C. J., Pofahl, W. E., & Hickner, R. C. (2007). Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiologica, 191(2), 139-146.
Gavin, T. P., & Wagner, P. D. (2001). Effect of short-term exercise training on angiogenic growth factor gene responses in rats. Journal of Applied Physiology, 90(4), 1219-1226.
Gavin, T. P., & Wagner, P. D. (2002). Attenuation of the exercise-induced increase in skeletal muscle Flt-1 mRNA by nitric oxide synthase inhibition. Acta Physiologica Scandinavica, 175(3), 201-209.
Gustafsson, T., & Kraus, W. E. (2001). Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle, and their modification in muscle pathology. Frontiers in Bioscience 6, D75-D89.
Gustafsson, T., Puntschart, A., Kaijser, L., Jansson, E., & Sundberg, C. J. (1999). Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. The American Journal of Physiology, 276(2), H679-H685.
Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353-364.
Hang, J., Kong, L., Gu, J. W., & Adair, T. H. (1995). VEGF gene expression is upregulated in electrically stimulated rat skeletal muscle. The American Journal of Physiology, 269(5), 1827-1831.
Hien, T. T., Kim, N. D., Pokharel, Y. R., Oh, S. J., Lee, M. Y., & Kang, K. W. (2010). Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase. Toxicology and Applied Pharmacology, (Article in Press).
Holash, J., Maisonpierre, P. C., Compton, D., Boland, P., Alexander, C. R., Zagzag, D., et al. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 284(5422), 1994-1998.
Hudlicka, O. (1998). Is Physiological Angiogenesis in Skeletal Muscle Regulated by Changes in Microcirculation? Microcirculation, 5(1), 7-23.
Hwang, J. T., Kim, S. H., Lee, M. S., Yang, H. J., Kim, M. J., Kim, H. S., et al. (2007). Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochemical and Biophysical Research Communications, 364(4), 1002-1008.
Jung, H. W., Seo, U. K., Kim, J. H., Leem, K. H., & Park, Y. K. (2009). Flower extract of Panax notoginseng attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-kappaB signaling pathway in murine macrophages. Journal of Ethnopharmacology, 122(2), 313-319.
Kim, Y. M., Namkoong, S., Yun, Y. G., Hong, H. D., Lee, Y. C., Ha, K. S., et al. (2007). Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biological and Pharmaceutical Bulletin, 30(9), 1674-1679.
Kimura, Y., Sumiyoshi, M., Kawahira, K., & Sakanaka, M. (2006). Effects of ginseng saponins isolated from Red Ginseng roots on burn wound healing in mice. British Journal of Pharmacology 148(6), 860-870.
Kocturk, S., Kayatekin, B. M., Resmi, H., Acikgoz, O., Kaynak, C., & Ozer, E. (2008). The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats. European Journal of Applied Physiology, 102(5), 515-524.
Lawler, J. M., Powers, S. K., Visser, T., Van Dijk, H., Kordus, M. J., & Ji, L. L. (1993). Acute exercise and skeletal muscle antioxidant and metabolic enzymes: effects of fiber type and age. The American Journal of Physiology, 265(6 Pt 2), 1344-1350.
Leeuwenburgh, C., & Heinecke, J. W. (2001). Oxidative stress and antioxidants in exercise. Current Medicinal Chemistry, 8(7), 829-838.
Leick, L., Hellsten, Y., Fentz, J., Lyngby, S. S., Wojtaszewski, J. F., Hidalgo, J., et al. (2009). PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. American Journal of Physiology. Endocrinology and Metabolism, 297(1), 92-103.
Leung, K. W., Pon, Y. L., Wong, R. N., & Wong, A. S. (2006). Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and beta-catenin/T-cell factor-dependent pathway in human endothelial cells. The Journal of Biological Chemistry, 281(47), 36280-36288.
Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 418(6899), 797-801.
Liu, C. X., & Xiao, P. G. (1992). Recent advances on ginseng research in China. Journal of Ethnopharmacology, 36(1), 27-38.
Lloyd, P. G., Prior, B. M., Yang, H. T., & Terjung, R. L. (2003). Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. American Journal of Physiology. Heart and Circulatory Physiology, 284(5), H1668-H1678.
Medh, R. D., & Thompson, E. B. (2000). Hormonal regulation of physiological cell turnover and apoptosis. Cell and Tissue Research, 301(1), 101-124.
Morisaki, N., Watanabe, S., Tezuka, M., Zenibayashi, M., Shiina, R., Koyama, N., et al. (1995). Mechanism of angiogenic effects of saponin from ginseng Radix rubra in human umbilical vein endothelial cells. British Journal of Pharmacology, 115(7), 1188-1193.
O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(2), 277-285.
Olfert, I. M., Breen, E. C., Mathieu-Costello, O., & Wagner, P. D. (2001). Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. Journal of Applied Physiology, 91(3), 1176-1184.
Park, M. W., Ha, J., & Chung, S. H. (2008). 20(S)-Ginsenoside Rg3 Enhances Glucose-Stimulated Insulin Secretion and Activates AMPK. Biological & Pharmaceutical Bulletin, 31(4), 748-751.
Pilegaard, H., Saltin, B., & Neufer, P. D. (2003). Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. Journal of Physiology, 546, 851-858.
Polverini, P. J. (1997). Role of the macrophage in angiogenesis-dependent diseases. Experientia Supplementum, 79, 11-28.
Primeau, A. J., Adhihetty, P. J., & Hood, D. A. (2002). Apoptosis in heart and skeletal muscle. Canadian Journal of Applied Physiology 27(4), 349-395.
Prior, B. M., Lloyd, P. G., Yang, H. T., & Terjung, R. L. (2003). Exercise-induced vascular remodeling. Exercise and Sport Sciences Reviews, 31(1), 26-33.
Reinders, M. E., Rabelink, T. J., & Briscoe, D. M. (2006). Angiogenesis and endothelial cell repair in renal disease and allograft rejection. Journal of the American Society of Nephrology 17(4), 932-942.
Resnick, N., & Gimbrone, M. A., Jr. (1995). Hemodynamic forces are complex regulators of endothelial gene expression. the Federation of American Societies for Experimental Biology Journal, 9(10), 874-882.
Rhule, A., Navarro, S., Smith, J. R., & Shepherd, D. M. (2006). Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. Journal of Ethnopharmacology, 106(1), 121-128.
Richardson, R. S., Wagner, H., Mudaliar, S. R., Henry, R., Noyszewski, E. A., & Wagner, P. D. (1999). Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. The American Journal of Physiology, 277(6), 2247-2252.
Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., et al. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 376(6535), 70-74.
Sengupta, S., Toh, S. A., Sellers, L. A., Skepper, J. N., Koolwijk, P., Leung, H. W., et al. (2004). Modulating angiogenesis: the yin and the yang in ginseng. Circulation, 110(10), 1219-1225.
Spina, R. J., Chi, M. M., Hopkins, M. G., Nemeth, P. M., Lowry, O. H., & Holloszy, J. O. (1996). Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. Journal of Applied Physiology, 80(6), 2250-2254.
Starkie, R. L., Angus, D. J., Rolland, J., Hargreaves, M., & Febbraio, M. A. (2000). Effect of prolonged, submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. Journal of Physiology, 528(3), 647-655.
Suzuki, K., Nakaji, S., Yamada, M., Liu, Q., Kurakake, S., Okamura, N., et al. (2003). Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Medicine and Science in Sports and Exercise, 35(2), 348-355.
Timmons, J. A., Jansson, E., Fischer, H., Gustafsson, T., Greenhaff, P. L., Ridden, J., et al. (2005). Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. Revisiones Sobre Biología Celular Biology, 3(1), 19.
Voces, J., Cabral de Oliveira, A. C., Prieto, J. G., Vila, L., Perez, A. C., Duarte, I. D., et al. (2004). Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats. Brazilian Journal of Medical and Biological Research 37(12), 1863-1871.
Williams, J. L., Weichert, A., Zakrzewicz, A., Da Silva-Azevedo, L., Pries, A. R., Baum, O., et al. (2006). Differential gene and protein expression in abluminal sprouting and intraluminal splitting forms of angiogenesis. Clinical Science, 110(5), 587-595.
Winder, W. W., & Hardie, D. G. (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American Journal of Physiology, 270(2), 299-304.
Yue, P. Y., Mak, N. K., Cheng, Y. K., Leung, K. W., Ng, T. B., Fan, D. T., et al. (2007). Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chinese Medicine, 2(1), 6.
Yue, P. Y., Wong, D. Y., Wu, P. K., Leung, P. Y., Mak, N. K., Yeung, H. W., et al. (2006). The angiosuppressive effects of 20(R)- ginsenoside Rg3. Biochemical Pharmacology, 72(4), 437-445.
Zumstein, A., Mathieu, O., Howald, H., & Hoppeler, H. (1983). Morphometric analysis of the capillary supply in skeletal muscles of trained and untrained subjects--its limitations in muscle biopsies. Pflugers Archiv European Journal of Physiology, 397(4), 277-283.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔