跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴宥儒
研究生(外文):You-Ru Lai
論文名稱:在體外組織內發熱源與血管間及兩發熱源間之非穩態溫度分佈研究
論文名稱(外文):Unsteady-State Temperature Profiles between a Heat Source and a Blood Vessel and between Two Heat Sources in an in vitro Tissue
指導教授:洪賑城
指導教授(外文):Jan-Chen Hong
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
論文頁數:62
中文關鍵詞:生物熱方程式熱傳導
外文關鍵詞:bioheat equationheat transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討兩種於熱療進行時可能發生之狀況,分別為: (a)圓柱型發熱源與平行血管中間之熱傳遞與溫度分佈;及(b)兩個平行圓柱型發熱源中間之熱傳遞與溫度分佈。
針對上述兩種狀況,本研究分別建立一個暫態溫度分佈之數學模式,並利用數值方法解出由室溫開始,經過一次長時間加熱、再經過三次短時間停止加熱、再加熱後,體外組織內溫度分佈對時間之變化。
在圓柱型發熱源與平行血管中間溫度分佈之數學模式中有三個參數,分別為組織中之導熱度(k),組織與空氣之熱傳係數(h)及組織與血管之熱傳係數(hb)。其中,k=0.4981+0.0008T W/m-K取至文獻報導,h由先前之實驗數據回歸,hb則由本研究之實驗數據回歸所得。我們發現hb隨血液流速之加快而加大,當血液流速超過1000 ml/min時,hb為無限大。
在兩個平行發熱源中間溫度分佈之數學模式中有兩個參數,k及h,其中k仍取自文獻報導,h則由實驗數據回歸,為170 W/m2-K,數學模式與實驗平均誤差為3.33 0C。若h值採用單發熱源之實驗數據回歸值(167.7 W/m2-K),則平均誤差值僅增加0.010C。因此,我們可以推論雙發熱源間之溫度分佈可由單發熱源之參數推算。再者,我們亦可依對稱性原理推測出多個平行且等距離圓柱型發熱源間之熱傳遞及溫度分佈。
In this study, the temperature profiles between a heat source and a blood vessel and between two heat sources in an in vitro tissue during hyperthermia treatment have been investigated.
The research work includes developing a mathematical model and solving the transient temperature profiles around the heat source by numerical method, starting from room temperature with a long heating followed by three cycles of non-heating and heating.
The mathematical model for temperature profiles between a heat source and a blood vessel has three parameters, including heat conductivity of tissue (k), heat transfer coefficient between tissue and atmosphere (h), and heat transfer coefficient between tissue and blood vessel (hb). The temperature dependence of heat conductivity reported in the literature was used in this study to calculate k as function of temperature, the value of h was adopted from previous study, and single-parameter data regression was used to obtain hb. It has been found that the heat transfer coefficient between tissue and blood vessel (hb) increases with increasing blood velocity, and it becomes infinite when the velocity of blood exceeds 1000 ml/min.
The mathematical model for temperature profiles between two heat sources has two parameters, heat conductivity of tissue (k) and heat transfer coefficient between tissue and atmosphere (h). Again, k was adopted from literature and single-parameter data regression was used to obtain the value of h. The results give that h*=170 W/m2-K, and the average error is 3.33℃. If the value of h is adopted from that of single heat source experiment (h=167.7 W/m2-K), the average error increases only 0.010C.
Therefore, we can conclude that the temperature profiles between two heat sources in an in vitro tissue can be calculated from the parameters for single heat source. In addition, we can also use the results of two heat sources to predict the temperature profiles among multiple heat sources, that are parallel and equally spaced, by use of symmetry principle.
致謝 i
英文摘要 ii
中文摘要 iv
目錄 v
圖目錄 vii
表目錄 ix
標記符號 x
第一章 前言
1.1 熱療法 1
1.2組織中之熱傳導 4
1.3 研究目的 6
第二章 數學模式 8
第三章 實驗
3.1實驗裝置與介面 14
3.2實驗步驟 16
3.3實驗操作與設定 18
3.4 LabVIEW設定與操作介面 18
第四章 數值方法 24
第五章 結果與討論 29
第六章 結論 45
參考文獻 47

圖目錄

圖2.1圓柱型發熱源與平行血管中間熱傳遞 12
圖2.2兩個平行圓柱型發熱源中間之熱傳遞 13
圖3.1 實驗裝置圖 20
圖3.2 壓克力載具圖 22
圖3.3 LabVIEW操作介面 23
圖5.1 圓柱型發熱源與平行血管中間,實驗溫度與模擬溫度在不同位置及血液流速下之比較[(a)vb =200 ml/min, (b) vb =600 ml/min, (c) vb =1000 ml/min,(d) vb =1200 ml/min, (e) vb =1400 ml/min, (f) vb =1600 ml/min] 36

圖5.2單圓柱型發熱源之狀況下,實驗溫度與模擬溫度在不同位置及時間之比較[(a) Data A (b) Data B (c) Data C] 39

圖5.3兩個平行圓柱型發熱源狀況下,組織與空氣間之熱傳係數(h)對誤差(Err)之影響 41

圖5.4兩個平行圓柱型發熱源狀況下,實驗溫度與模擬溫度在不同位置及時間之比較 [(a) 3 mm (b) 5 mm] 42

圖5.5圓柱型發熱源與平行血管中間之非穩態溫度分佈曲線 (P=1.61 W, h=170 W/m2-K, vb=600 ml/min, hb=155.8 W/m2-K, 0≦t≦350s) 43
圖5.6兩個平行圓柱型發熱源間之非穩態溫度分佈曲線
(P=1.32W, h=170 W/m2-K, 0≦t≦350s) 44

表目錄

表1.1 組織之導熱度與熱容量 7
表5.1不同血液流速下組織與血液間之最佳熱傳係數 (hb)及誤差 (Err) 34
表5.2兩個平行圓柱型發熱源狀況下,組織與空氣間之最佳熱傳係數(h)及平均誤差(Err)35
[1] Diederich C.J., Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation, Int. J. Hyperthermia, Vol. 21, 2005, pp. 745–53.
[2] Habash R.W.Y., Bansal R., Krewski D., and Alhafid H.T., Thermal therapy, part 1: an introduction to thermal therapy, Critical Reviews in Biomedical Engineering, Vol. 34, 2006, pp. 459–489.
[3] Habash R.W.Y., Bansal R., Krewski D., and Alhafid H.T., Thermal therapy, part 2: hyperthermia techniques, Critical Reviews in Biomedical Engineering, Vol. 34, 2006, pp. 491–542.
[4] Habash R.W.Y., Bansal R., Krewski D., and Alhafid H.T., Thermal therapy, part 3: ablation techniques, Critical Reviews in Biomedical Engineering, Vol. 35, 2007, pp. 37-121.
[5] Habash R.W.Y., Bansal R., Krewski D., and Alhafid H.T., Thermal therapy, part 4: electromagnetic and thermal dosimetry, Critical Reviews in Biomedical Engineering, Vol. 35, 2007, pp. 123-182.
[6] Welch A.J., Motamedi M., Rastegar S., Le Carpentier G.L., and Jansen D., Laser thermal ablation, Photochem Photobiol, Vol. 53, 1991, pp. 815–23.
[7] Lepock J.R., How do cells respond to their thermal environment?, Int J Hyperthermia, Vol. 21, 2005, pp. 681–687.
[8] Germer C.T., Roggan A., Ritz J.P., Isbert C., Albrecht D., Muller G., and Buhr H. J., Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range, Lasers Surg. Med., Vol. 23, 1998, pp. 194–203.
[9] Haemmerich D., and Laeseke P.F., Thermal tumour ablation: devices, clinical applications and future directions, Int. J. Hyperthermia, Vol. 21, 2005, pp.755–760.
[10] Dewhirst M.W., Viglianti B.L., Lora-Michiels M., Hanson M., and Hoopes P.J., Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia, Int. J. Hyperthermia, Vol. 19, 2003, pp. 267–94.
[11] Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human arm, J. Appl. Physio, Vol. 1, 1948, pp. 93–122.
[12] Weinbaum S., and Jiji M., A new simplified bioheat equation for the effect of blood flow on local average tissue temperature, J. Biomech. Eng., Vol.107, 1985, pp.131–139.
[13] Dewey W.C., Li X.L., and Wong R.S., Cell killing, chromosomal aberrations, and division delay as thermal sensitivity is modified during the cell cycle, Radiat. Res., Vol.122, 1990, pp. 268–274.
[14] Waters E.R., and Schaal B.A., Heat shock induces a loss of rRNA-encoding DNA repeats in Brassica nigra, Proc Natl. Acad. Sci., USA, Vol. 93, 1996, pp.1449–1452.
[15] Leonhardt E.A., Trinh M., Forrester H.B., Johnson R.T., and Dewey W.C., Comparisons of the frequencies and molecular spectra of HPRT mutants when human cancer cells were X-irradiated during G1 or S phase, Radiat. Res., Vol. 148, 1997, pp.548–60.
[16] Mason P. A., Walters T. H., DiGiovanni J., Beason C. W., Jauchem J.R., Dick, Jr. E.J., Mahajan K., Dusch S.J., Shields B.A., Merritt J.H., Murphy M.R., and Ryan K.L., Lack of effect of 94 GHz radio frequency radiation exposure in an animal model of skin carcinogenesis, Carcinogenesis, Vol. 22, 2001, pp.1701–1708.
[17] Imaida K., Taki M., Watanabe S., Kamimura Y., Ito T., Yamaguchi T., Ito N., and Shirai T., The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium-term liver bioassay, Jpn. J. Cancer Res., Vol. 89, 1998, pp.995–1002.
[18] Tell R. A., and Harlen F., A preview of selected biological effects and dosimetric data useful for development of radiofrequency safety standards for human exposure, J. Microw. Power, Vol. 14, 1979, pp. 405–24.
[19]Goldberg SN, Gazelle GS, Muller PR. A Unified Approach to Underlying Principles, Techniques, and Diagnostic Imaging Guidance. AJR. 2000;174:323-331.
[20] Button T., Barbour S., Cermignani J.D., Crugnale E., McGill R. E., and Spacht G., Magnetic resonance guided hyperthermia, U. S. Patent, No. 5,492,122, Feb. 20, 1996.
[21] Valvano J.W., Cochran J.R., and Diller K.R., Thermal conductivity and diffusivity of biomaterials measured with self-heating thermistors., International Journal of Thermophysics, Vol. 6, No. 3, 1985, pp. 301-311
[22] Abraham J.P., Sparrow E.M., A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties, International Journal of Heat and Mass Transfer, Vol.50, 2007, pp. 2537-2544.
[23] Lee P.S., Unsteady-state temperature profiles around a cylindrical heat source in a dead tissue, Master Thesis, Tatung University, Taipei, Taiwan, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top