跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 07:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威
研究生(外文):Wei Chen
論文名稱:利用電漿處理及UV光接枝聚合固定聚丙烯酸藥物釋放水膠並固定幾丁聚醣/褐藻酸於316L不鏽鋼表面
論文名稱(外文):Immobilization of poly(acrylic acid) by using plasma treatment and UV-induced polymerization then immobilization Chitosan / Alginate mixed solution on the 316L stainless steel.
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-Shao Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:93
中文關鍵詞:表面接枝聚合褐藻酸感應型水膠幾丁聚醣電漿聚合
外文關鍵詞:sensitive hydrogelalginateplasma polymerizationsurface polymerizationchitosan
相關次數:
  • 被引用被引用:5
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:183
  • 收藏至我的研究室書目清單書目收藏:0
不鏽鋼的金屬性質很難表面固定高分子,因不鏽鋼本身為無機基材,故本研究利用電漿聚合法先沉積一層界面層,然後以表面自由基光接枝聚合法成長聚丙烯酸水膠,即可利用此酸鹼值感應型水膠進行藥物釋放,並且能夠在其表面再沉積一層HMDSZ( Hexamethyldisila- zane )薄膜作為藥物釋放之阻隔層,以延緩及持續藥物釋放的時間,之後能利用浸泡EDC / NHS方法定幾丁聚醣/褐藻酸於表面,形成適合細胞貼附之表面。
而經過電漿後處理及表面接枝聚合,可改變成親水性,有利於幾丁聚醣的固定。結果為利用電漿沉積後接枝聚丙烯酸之固定量(2.08 mg/cm2)比只有電漿後處理的固定量(0.24 mg/cm2)多;另外隨著幾丁聚醣/褐藻酸混和比對固定量的影響,發現褐藻酸比例增加時,固定量有增加趨勢,固定量增加,表示褐藻酸比例上升,能有利於EDC / NHS方法固定在表面帶陰電性高分子上。
結果發現利用HMDSZ電漿沉積膜,能夠延緩聚丙烯酸的膨潤率,從約43~47倍,降低至25~30倍,但在藥物釋放的情況下並不明顯,只有初期有延緩作用。
The stainless steel is one kinds of an inorganic material, it`s difficult to immobile the polymer due to its metallic properties. In this study, using plasma treatment to deposit an interface layer, then using UV-induced polymerization to form poly(acrylic acid) hydrogel. It could be used in drug delivery system which is one kinds of pH sensitive hydrogel, and it could be deposited a layer of HMDSZ film to stem drug released. Then immerse into EDC/NHS solution to immobile chitosan and alginate on the surface which suitable for cell adhesion.
The surface wettability will become hydrophile after UV-induced polymerization.It is contributive of chitosan immobilization. Then the amount of chitosan by using acrylic acid immobilization is about 2.08mg/cm2, it is much higher than which is only by surface activation production about 0.24mg/cm2. Besides, the effect of amount of chitosan/alginate mixed solution was followed by alginate ratio increase. As the result of increasing the alginate ratio will favorable for surface immobilization.
The results indicate that plasma deposited HMDSZ film can suspend swelling ratio of poly(acrylic acid) from 43~47 to 25~30 ratio, but in the drug release system is not significantly.
第一章 前言
1.1 植入性生醫材料 1
1.1.1 植入性金屬合金 2
1.1.2 植入性高分子 4
1.1.3 生物分解性高分子 4
1.1.3.1 幾丁質與幾丁聚醣 5
1.1.3.2 褐藻酸鹽 6
1.1.3.3聚電解質複合物 7
1.2 電漿及表面接枝聚合 9
1.2.1 電漿 9
1.2.2 低溫電漿表面處理 11
1.2.3 電漿表面處理在生醫材料上的應用 15
1.2.4 UV光表面接枝聚合法 17
1.3 水膠介紹 19
1.3.1 網狀聚合物與膠體 19
1.3.2 水膠 21
1.3.3 智慧型水膠 22
1.3.4 酸鹼值感應型水膠 22
1.4 藥物釋放 24
1.4.1 藥物之包覆與釋放現象 24
1.4.2 高分子之藥物釋放 25
1.5 文獻回顧 27
1.6 研究目的 30


第二章 實驗流程與分析
2.1 電漿表面固定多醣類的實驗流程A 31
2.2 電漿沉積接枝聚合AAc後固定多醣類的實驗流程B 32
2.3 材料與單體 33
2.3.1 基材33
2.3.2 電漿沉積單體33
2.3.3 表面接枝聚合水膠單體 33
2.3.4 表面接枝聚合水膠單體其添加物34
2.3.5 交聯劑(TPP)與耦合劑(EDC) 35
2.3.6 生物分解性高分子 36
2.4基材準備 38
2.5 實驗流程 38
2.5.1 電漿表面活化及沉積 38
2.5.1.1 利用HMDSZ電漿表面沉積 39
2.5.1.2 利用O2電漿表面活化 40
2.5.1.3 UV光直接固定幾丁聚醣與褐藻酸及浸泡TPP溶液41
2.5.2 電漿表面改質 42
2.5.2.1 利用HMDSZ電漿表面沉積 43
2.5.2.2 利用O2電漿表面活化 43
2.5.2.3 UV光誘導接枝丙烯酸水溶性單體水膠 43
2.5.2.4 浸泡耦合劑EDC/NHS 45
2.5.2.5 浸泡於幾丁聚醣/褐藻酸混合溶液 45
2.6 分析 46
2.6.1 表面潤濕性量測(water contact angle) 46
2.6.2 膜厚量測(α-step) 46
2.6.3 極化曲線測試(corrosion curve) 46
2.6.4 接枝密度量測(graft density) 46
2.6.5 膨潤性量測(swelling) 47
2.6.6 表面形貌觀察(SEM) 47
2.6.7 表面官能基分析(Micro FT-IR)47
2.6.8 表面成份分析(XPS) 48
2.6.9 藥物釋放 48
第三章 結果與討論
3.1 表面潤濕性 50
3.2 膜厚 53
3.3 抗蝕性測試 55
3.4 接枝密度對固定量影響 59
3.5 膨潤性測試 63
3.6 表面形貌觀察 68
3.7 表面官能基改變 74
3.8 表面成份分析 79
3.19 藥物釋放 84


第四章 結論88
參考文獻89
[1]Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974.
[2] Sujata V. Bhat, Biomaterials, Alpha Science International Ltd, Pangbourne England, 2002. p.5
[3] K.I. Draget, G. Skjåk-Braek, O. Smidsrød, Int. J. Biol. Macromol. 21 (1997) 47.
[4] C. Wang, H. Liu, Q. Gao, X. Liu, Z. Tong, Carbohydr. Polym. 71 (2008) 476.
[5] N.E. Simpson, N. Khokhlova, J.A. Oca-Cossio, S.S. McFarlane, C.P. Simpson, I.Constantinidis, Biomaterials 26 (2005) 4633.
[6]Tsuchida E. The Science of Polymer (1981) 162-167
[7] Anal A. K., Stevens W. F. International Journal of Pharmaceutics 290 (2005) 45–54.
[8]N. Trivedi, G.M. Steil, C.K. Colton, S. Bonner-Weir, G.C. Weir, Cell Transplant. 9 (2000) 115.
[9] Guoqi Shi, Yuanwei Chen, Changxiu Wan *, Xixun Yu, Ting Feng, Yulong Ding. Applied Surface Science 255 (2008) 422–425.
[10] Cui-Yun Yu, Bo-Cheng Yina,Wei Zhang, Si-Xue Cheng, Xian-Zheng Zhang, Ren-Xi Zhuo. Colloids and Surfaces B: Biointerfaces 68 (2009) 245–249.
[11]Fwu-Long Mi, Hsing-Wen Sung, Shin-Shing Shyu. Carbohydrate Polymers 48 (2002) 61-72.
[12] Heidi Vogt Sather , Hilde K. Holme , Gjertrud Maurstad , Olav Smidsrød , Bjørn T. Stokke. Carbohydrate Polymers 74 (2008) 813–821.
[13] Gjertrud Maurstad, Yrr A. Mørch, Andreas R. Bausch, Bjørn T. Stokke. Carbohydrate Polymers 71 (2008) 672–681.
[14] Joon Bu Park“Biomaterials an Introduction” Plenum Publications,
NEW YORK. pp 1- 6
[15] K. Makino, J. Hiyoshi, and H. Ohshima., Colloids and Surfaces B : Biointerfaces., 19, 197 (2000).
[16] F. F. Bunshan, et al.,“Deposition Technologies for Films and Coating”Noyes Publications, New Jersey.
[17]H. L. Spell and C. P. Christenson., TAPPI 62, 77 (1979).
[18] M. Stradal and D. A. I. Going., Polym. Eng.Sci., 17, 38 (1977).
[19]M. Strobel, C. Dunatov, J. M. Strobel, C. S. Lyon, S. J. Perron, and M. C. Morgen, J. Adhesion Sci. Technol., 3, 321 (1989).
[20] M. Stradal and D. A. I., Goring, J. Adhesion., 8, 57 (1976).
[21] D. Briggs and C. R. Kendall., Polymer., 20, 1053 (1979).
[22] F. Garbassi, M. Morra, and E. Occhiello, Polymer Surface From Physics to Technology, Polymer International, Vol. 49, P. 135, 2000.
[23]N. Inagaki, Plasma surface modification and plasma polymerization, Technomic Publish Company, Inc., P. 21-41, 1996.
[24]Q. Chen, L. Dai, M. Gao, S. Huang, and A. Mau, Plasma Activation of Carbon Nanotubes for Chemical Modification, J. Phys. Chem., Vol. 105, P. 618-622, 2001.
[25] H. Iwate A. Kishida, M. Suzuki, Y. Hata, and Y. Ikada, J. Appl. Polym. Sci., Part A. Polym. Chem., 26, (1988) 3309
[26] G. H. Hsiue and W. K. Hang, J.Appl. Polym. Sci., 30, (1985) 1023
[27]Choi, S. H., J. Yoon, andT. G. Park, J. Coll. Inter. Sci., 251, 57(2002).
[28] Flory, P . J., Principles of Polymer Chemistry, Ithaca,Cornell University Press, New Y ork (1953).
[29]N.A.Peppas, H. J. Moynihah and M. L. Lucy. Journal of Biomedical Materials Research,(1985) vol.19, pp. 397.
[30]Lee, W .F., and W. Y. Yuan. J. Appl. Polym. Sci., 79, 1675 (2001).
[31]W. Liu, B. Zhang, W. W. Lu, X. Li, D. Zhu, K.D. Yao, Q. Wang, C. Zhao, C. Wang. Biomaterials (2004), vol.25, 3005-3012.
[32]Gerald Gerlach.,er al., Macromol. Symp(2004),vol.210, 403-410.
[33]B. A. Firestone, R.A. Siegel., J. Appl. Polym. Sci. 43, 901 (1991).
[34]M. Falamarzian, J. Varshosaz, Drug. Dev. Ind. Pharm. 24, 667 (1998).
[35]E. Adem, M. Avalos-Borja, E. Bucio, G. Burillo, F.F. Castillon, L. Cota. Nuclear Instruments and Method s in Physics Research B 234 (2005) 471–476.
[36]J. Li, M. Zhai, M. Yi, H. Gao, H. Ha. Radiation Physics and Chemistry(1999), Vol. 55, 173-178.
[37]Horia M. Nizam El-Din, Manal F. Abou Taleb, Abdel Wahab M. El-Naggar. Nuclear Instruments and Methods in Physics Research B 266 (2008) 2607–2613
[38]Shuibo Hua, Aiqin Wang. Carbohydrate Polymers 75 (2009) 79–84
[39] Yong Hu, Xiqun Jiang, Yin Ding, Haixiong Ge, Yuyan Yuan, Changzheng Yang. Biomaterials 23 (2002) 3193–3201.
[40] K H Ulrich. Pharmacol. Rev., 1981, 33 (1) : 17.
[41]Ende, M. T., D. Hariharan, and N. A. Peppas. React. Polym., 25, 127 (1997).
[42] R. Langer and N. A. Peppas. Advances in biomaterials, drug delivery,and bionanotechnology. AIChE Journal, 49(12):2990–3006, (2003).
[43]Shuiqin Zhou and Benjamin Chu, 1998 . J. phys . Chem. Part B, vol. 102, pp. 1364 – 1371.
[44] Jae-Woon Shim, Young-Chang Nho Journal of Applied Polymer Science, Vol. 90, 3660–3667 (2003)
[45]Tejraj M. Aminabhavi, Sunil A. Agnihotri, B. Vijaya Kumar Naidu, 2004. Journal of Applied Polymer Science, vol.94, pp. 2057 – 2064 .
[46]Belma Isik, Mehmet Kis, 2004. Journal of Applied Polymer Science, vol.94, pp. 1526 – 1531
[47]Shula Radin, Paul Ducheyne. Biomaterials 28 (2007) 1721–1729
[48]Guoqi Shi, Yuanwei Chen, Changxiu Wan, Xixun Yu, Ting Feng. Yulong Ding. Applied Surface Science 255 (2008) 422 – 425.
[49]Cui-Yun Yu, Bo-Cheng Yina,Wei Zhang, Si-Xue Cheng, Xian-Zheng Zhana, Ren-Xi Zhuo. Colloids and Surfaces B: Biointerfaces 68 (2009) 245–249
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊