跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施智閔
研究生(外文):CHIN-MIN SHIH
論文名稱:採用切換式運算放大器共享技術之一伏特十位元10MSample/s管線式類比數位轉換器
論文名稱(外文):A 1-V, 10BIT, 10MSAMPLE/S SWITCHED-OPAMP PIPELINED ADC USING OPAMP-SHARING TECHNIQUE
指導教授:黃淑絹黃淑絹引用關係
指導教授(外文):Shu-Chuan Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:57
中文關鍵詞:放大器共享類比數位轉換器管線式類比數位轉換器切換式放大器技術
外文關鍵詞:POAMP-SHARINGADCPIPELINED ADCSWITCHED OPAMP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要描述一個低功率、10位元、操作頻率在10MHz而工作電壓在1V的管流式類比數位轉換器之設計,並提出利用切換式運算放大器共享技術來減少轉換器元件數量。有別於一般的低功率低電壓電路,本架構不需要過多的運算放大器,單純利用開關切換以降低功率以及達成運算放大器共用。本轉換器採用標準0.18um 1P6M CMOS製程,並透過Hspice模擬電路架構。本轉換器操作在10MHz的取樣頻率,工作電壓為1V,輸入頻率為530kHz下SNDR為51.66dB,其總功率消耗為18mW。
In this thesis, a 10-bit 10-MHz pipelined analog-to-digital converter (ADC) consisting of 1.5-bit/stage has been designed and verified by Hspice simulation with TSMC 0.18-µm 1P6M CMOS process models. In order to operation at 1V, the switched-opamp technique is employed in the pipelined ADC. In order to saving the power consumption and chip area, the analog-to-digital converter merges two output stages using an opamp-sharing technique.
The resulting peak signal-to-noise and distortion ratio (SNDR) of the pipelined ADC is 51.66 dB with sampling frequency of 10 MHz at input frequency of 530 kHz. Power consumption of this ADC is 18mW with 1V power supply.
誌謝 i
ABSTRACT ii
摘要 iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
CHAPTER 1 INTRODUCTION 1
1.1 Motivation and Goal 1
1.2 Organization 3
CHAPTER 2 PIPELINED A/D CONVERTER 5
2.1 Introduction 5
2.2 Pipelined ADC 5
2.2.1 Digital Error Correction Technique 8
2.2.2 1.5Bit/Stage for Pipelined ADC 11
2.3 Summary 12
CHAPTER 3 THE DESIGN OF LOW-VOLTAGE PIPELINED ANALOG-TO-DIGITAL CONVERTER 13
3.1 Introduction 13
3.2 Switched-Capacitor Circuit in Low-Voltage 13
3.2.1 Conventional SC MDAC Circuit 14
3.2.2 Problem at Low-Voltage SC Circuit 15
3.2.3 Charge-Pump Clock Driver 17
3.2.4 Clock Bootstrapped Switch 18
3.2.5 Low-Threshold Voltage Process 19
3.2.6 Principle of Switched-Opamp Technique 20
3.2.7 Opamp-Sharing Technique 21
CHAPTER 4 DESIGN OF PIPELINED ADC 23
4.1 Specification of Pipelined ADC 23
4.1.1 The Required Minimum Capacitor Size 24
4.1.2 Specification of Opamp 26
4.2 Low-Voltage Sample-and-Hold Circuit 28
4.3 Design of So-MDAC with Opamp-Sharing 30
CHAPTER 5 CIRCUIT DESIGN AND SIMULATION RESULTS 36
5.1 Design and Simulation of the Opamp 36
5.1.1 Opamp Design 36
5.1.2 Switched-Capacitor CMFB 40
5.1.3 Simulation of The Opamp 43
5. 2 Sub-ADC 44
5. 3 Simulation of The Proposed Low-Voltage Pipelined ADC 47
CHAPTER 6 CONCLUSION 51
6. 1 Conclusion 51
6. 2 Future Work 51
REFERENCES 53
[1]R. Lotfi, O. Shoaei, “A Low-Voltage Low-Power Fast-Settling Operational Amplifier for Use In High-Speed High-Resolution Pipelined A/D Converters,” in Proc. IEEE International Symposium on Circuits and Systems, ISCAS 2002, Vol. 2, pp. 416-419, May 2002.
[2]J. Steensgaard, “Bootstrapped Low-Voltage Analog Switches,” IEEE, International Symposium on Circuits and Systems, Vol. 2, pp. 29 - 32, June 1999.
[3]W. C. Song, H. W. Choi, S. U. Kwak, and B. S. Song, “A 10-b, 20-Msampl/s Low-Power COMS ADC,” IEEE J. Solid-State Circuits, Vol. 30, No.5, pp. 514 – 521, May 1995.
[4]S. H. Lewis and P. R. Gray, “A Pipelined 5-Msamples/s 9-bit Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, Vol. SC-22, pp. 954-961, Dec. 1987.
[5]L. Lin, “Design Techniques for Parallel Pipelined ADC,” UC Berkeley MS Thesis, May 1996.
[6]S. Lewis, et al, “10-b 20Msample/s Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, Vol. 27, pp. 351-358, Mar. 1992.
[7]A. M. Abo and P. R. Gray, “A 1.5 V, 10-bit, 14 MS/s CMOS Pipeline Analog-to-Digital Converter,” VLSI Circuits,1998. Digest of Technical Papers. Symposium on, 1998.
[8]P. C. Yu and H. S. Lee, “A 2.5-V, 12-b, 5-Msample/S Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, Vol. 31, No. 12, pp. 1854-1861, Dec. 1996.
[9]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
[10] B. Razavi, Principles of Data Conversion System Design, IEEE Press 1995.
[11] R. C. Yen and P. R. Gray, “A MOS Switched-Capacitor Instrumentation Amplifier,” IEEE J. Solid-State Circuits, Vol. SC-17, No. 6, pp. 1008-1013, Dec. 1982.
[12] S. Rabii and B. A. Wooley, “A 1.8-V Digital-Audio ΣΔ Modulator in 0.8μm CMOS,” IEEE J. Solid-State Circuits, Vol. 32, pp. 783-796, Jun. 1997.
[13] M. Dessouky and A. Kaiser, “Very Low-Voltage Digital-Audio ΣΔ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping,” IEEE J. Solid-State Circuits, Vol. 36, pp. 349-355, Mar. 2001.
[14] M. Dessouky and A. Kaiser, “Input Switch Configuration Suitable for Rail-to-Rail Operation of Switch-Opamp Circuits,” Electron. Lett., Vol. 35, No. 1, pp. 8-10, Jan. 1999.
[15] J. Steensgaard, “Bootstrapped Low-Voltage Analog Switches,” in Proc. IEEE Int. Symp. Circuits and Systems, Vol. 2, pp. 29-32, May 1999.
[16] U. Moon, G. Temes, E. Bidari, M. Keskin, L. Wu, J. Steensgaard, and F. Maloberti, 6th International Conference on VLSI and CAD, pp. 349-358, 1999.
[17] M. Waltari and K. A. I. Halonen, “1-V 9-Bit Pipelined Switched-Opamp ADC,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 1, pp. 129 -134, Jan. 2001.
[18] H.-H. Ou and B.-D. Liu, “A 1-V 9-Bit 2.5Msample/s Pipelined ADC with Merged Switched-Opamp and Opamp-Sharing Techniques,” IEEE International Symposium, Vol. 3, pp. 1972 - 1975, May 2005.
[19] H.-C. Kim, D.-K. Jeong, and W. Kim, “A Partially Switched-Opamp Technique for High-Speed Low-Power Pipelined Analog-to-Digital Converters,” IEEE Transctions on Circuits and Systems-I: Regular, Vol. 53, No. 4, pp. 795 - 801, Apr. 2006.
[20] K. Nagaraj, H. S. Fetterman, J. Anidjar, St. H. Lewis, and R. G. Renninger, “A 250-mW, 8-b, 52-Msamples/s Parallel-Pipelined A/D Converter with Reduced Number of Amplifiers,” IEEE Journal of Solid-State Circuits, Vol. 32, No.3, pp. 312 - 320, Mar. 1997.
[21] H. A. Aslanzadeh, S. Mehrmanesh, M. B. Vahidfar, and M. Atarodi, ”A 1.8V High-Speed 13-Bit Pipelined Analog to Digital Converter for Digital IF Applications,” IEEE Journal of Solid-State Circuits, Vol. 1, pp. I-885 - I-888 25-28 May 2003.
[22] J. Li, G. C. Ahn, D. Y. Chang, and U. K. Moon, “A 0.9-V 12-mW 5-MSPS Algorithmic ADC with 77-dB SFDR,” IEEE Journal of Solid-State Circuits, Vol. 40, pp. 960 - 969, April 2005.
[23] M. Yavari and O. Shoaei, “Low-voltage Low-Power Fast-Setting CMOS Operational Transconductance Amplifiers for Switched-Capacitor Applications,” IEE Proc.-Circuits Devices Syst., Vol. 151, No. 6, pp. 573 - 578, Dec. 2004.
[24] B. K. Ahuja, “An Improved Frequency Compensation Technique for CMOS Operational Amplifiers, ” IEEE J. Solid-State Circuits, Vol. SC-18, No. 6, pp. 629-633, Dec. 1983.
[25] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-Interscience, 2005.
[26] Y. Chiu, P. R. Gray, and B. Nikolic, “A 14-b 12-MS/s CMOS Pipeline ADC with Over 100-dB SFDR,” IEEE Journal of Solid-State Circuits. Vol. 39, No.12, pp. 2139 - 2151, Dec. 2004.
[27] C. H. Chen, “Low-Voltage Pipelined A/D Converter Using Opamp-Sharing Technique,” M.S. thesis, National Cheng Kung University, Tainan, Taiwan, July 2006.
[28] M. H. Liu, K. C. Huang, W. Y. Ou, T. Y. Su, and S. L. Liu, “A Low Voltage-Power 13-bit 16MSPS CMOS Pipelined ADC,” IEEE J. Solid- State Circuits, vol. 39, no. 5, pp. 834–836, May 2004.
[29]J. Li, G. C. Ahn, D. Y. Chang and U. K. Moon, “A 0.9-V 12-mW 5-MSPS Algorithmic ADC with 77-dB SFDR,” IEEE J. Solid-State Circuits, vol.40, no.4, pp. 960- 969, Apr. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊