|
[1] M. Espana and I. D. Landau, “Reduced order bilinear models for distillation columns,” Automat., vol. 14, pp. 345-355, Jul. 1978. [2] H. N. Koivo and R. Cojocariu, “An optimal control for flotation circuit,” Automat., vol. 13, pp. 37-45, Jan. 1977. [3] M. S. Mousa, R. K. Miller, and A. N. Michel, “Stability analysis of hybrid composite dynamical systems: Descriptions involving operators and differential equations,” IEEE Trans. Automat. Contr., vol. AC-31, pp.216-226, Jun. 1986. [4] M. S. Mousa, R. K. Miller, and A. N. Michel, “Stability analysis of hybrid composite dynamical systems: escriptions involving operators and difference equations, ” IEEE Trans. Automat. Contr., vol. AC-31, pp. 603-615, Jun. 1986. [5] T. Ionescu and R. V. Monopoli, “On the stabilization of bilinear systems via hyperstability,” IEEE Trans. Automat. Contr., vol. AC-20, pp 280-284, Apr. 1975. [6] R. Longchamp, “Stable feedback control of bilinear systems,” IEEE Trans. Automat. Contr., vol. AC-25, pp.37-45, Apr. 1980. [7] J. P. Quinn, “Stabilization of bilinear systems by quadratic feedback controls,” J . Math. Anal. Appl., vol. 75, pp. 66-80, May 1980. [8] P. O. Gutman, “Stabilizing controllers for bilinear systems,” IEEE Trans. Automat. Contr., vol. AC-26, pp. 917-922, Aug. 1981. [9] C. Gounaridis and N. Kalouptsidis, “Stablility of discrete-time bilinear systems with constant inputs,” Int. J. Contr., vol. 43, pp..663-669, Feb. 1986. [10] M. Slemrod, “Stabilization of bilinear control systems with applications to nonconservative problems in elasticity,” SIAM J. Contr. Optimiz., vol. 16, pp. 131-141, Jan. 1978. [11] X. Yang, L. K. Chen, and R. M. Burton, “Stability of bilinear systems with output feedback,” Int. J. Contr., vol. 50, no. 5, pp 2085-2092, Nov. 1989. [12] R. Longchamp, “Controller design for bilinear systems,” IEEE Trans. Automat. Contr., vol. 25, no. 3, pp. 547–548, Jun. 1980. [13] P. O. Gutman, “Stabilizing controllers for bilinear systems,” IEEE Trans. Automat. Contr., vol. 26, no. 4, pp. 917–922, Apr. 1981. [14] D. E. Koditschek and K. S. Narendra, “Stabilizability of second-order bilinear systems,” IEEE Trans. Automat. Contr., vol. 28, no. 10, pp.987–989, Oct. 1983. [15] E. P. Ryan and N. J. Buckingham, “On asymptotically stabilizing feedback control of bilinear systems,” IEEE Trans. Automat. Contr., vol. 28, no. 8, pp. 863–864, Aug. 1983. [16] R. Genesio and A. Tesi, “The output stabilization of SISO bilinear systems,” IEEE Trans. Automat. Contr., vol. 33, no. 10, pp. 950–952, Oct. 1988. [17] R. Luesink and H. Nijmeijer, “On the stabilization of bilinear systems via constant feedback,” Lin. Alg. Appl., vol. 122–124, pp. 457–474, Sep.-Nov. 1989. [18] L. K. Chen, X Yang, and R. R. Mohler “Stability analysis of bilinear systems,” IEEE Trans. Automat. Contr., vol. 36, no. 11, Nov. 1991. [19] X. S. Yang and L. K. Chen “Stability of discrete bilinear system with time-delayed feedback function,” IEEE Trans. Automat. Contr., vol. 38, no. 1, Jan. 1993. [20] M. S. Chen and S. T. Tsao, “Exponential stabilization of a class of unstable for bilinear systems,” IEEE Trans. Automat. Contr., vol. 45, no. 5, pp. 989–992, May 2000. [21] M. S. Chen, “Exponential stabilization of constrained bilinear systems,” IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 989–992, Aug. 1998. [22] M. Bacic, M. Cannon, and B. Kouvaritakis, “Constrained control of SISO bilinear systems,” IEEE Trans. Automat. Contr., vol. 48, no. 8, pp. 1443–1447, Aug. 2003. [23] M. Frayman, “On the relationship between bilinear and quadratic systems,” IEEE Trans. Automat. Contr., vol. 20, no. 4, pp. 567–568, Aug. 1975. [24] H. D. Chiang, M. W. Hirsch, and F. F. Wu, “Stability regions of nonlinear autonomous dynamical systems,” IEEE Trans. Automat. Contr., vol. 33, no. 1, pp. 16–27, Jan. 1988. [25] H. D. Chiang and J. S. Thorp, “Stability regions of nonlinear dynamical systems: a constructive methodology,” IEEE Trans. Automat. Contr., vol. 34, no. 12, pp. 1229–1241, Dec. 1989. [26] A. Tesi, F. Villoresi, and R. Genesio, “On the stability domain estimation via a quadratic Lyapunov function: convexity and optimality properties for polynomial systems,” IEEE Trans. Automat. Contr., vol. 41, no. 11, pp. 1650–1657, Nov. 1996. [27] G. Chesi, A. Tesi, A. Vicino, and R. Genesio, “On convexification of some minimum distance problems,” in Proc. of the 5th Eur. Control Conf., Karlsruhe, Germany, Aug. 1999. [28] B. Tibken, “Estimation of the domain of attraction for polynomial systems via LMI’s,” in Proc. of 39th IEEE Conf. Decision Contr., Sydney, Australia, pp. 3860–3865, Dec. 2000. [29] B. Tibken and Hachicho, “Estimation of the domain of attraction for polynomial systems using multidimensional grid,” in Proc. of the 39th IEEE Conf. Decision Contr., Sydney, Australia, pp. 3870–3874, Dec. 2000. [30] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Solving quadratic distance problems: An LMI-based approach,” IEEE Trans. Automat. Contr., vol. 48, no. 2, pp. 200–212, Feb. 2003. [31] G. Chesi, “Estimating the domain of attraction for uncertain polynomial systems,” Automat., vol. 40, no. 11, pp. 1981–1986, Nov. 2004. [32] G.Chesi, “Computing output feedback controllers to enlarge the domain of attraction in polynomial systems,” IEEE Trans. Automat. Contr., vol. 49, no. 10, pp. 1846–1850, Oct. 2004. [33] F. Amato, C. Cosentino, and A. Merola, “On the region of attraction of nonlinear quadratic systems,” Automat., vol. 43, no. 12, pp. 2119-2123, Dec. 2007. [34] I. Derese and E. Noldus, “Design of linear feedback laws for bilinear systems,” Int. J. Contr., vol. 31, no. 2, pp. 219–237, Feb. 1980. [35] K. Furuta, “Sliding mode control of a discrete system,” Syst. Contr. lett., vol. 14, pp. 144-152, Feb. 1990. [36] W. B. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 117-122, Apr. 1995. [37] A. Bartoszewicz, “Discrete-time quasi-sliding-mode control strategies,” IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 633–637, Aug. 1998. [38] C. Y. Tang and E. A. Misawa, “Discrete variable structure control for linear multivariable systems: the state feedback case,” in Proc. of the American Control Conference Philadelphia, Pennsylvania Jun. 1998. [39] Y. Zheng, Y. W. Jing and G. H. Yang “Design of approximation law for discrete-time variable structure control systems,” in Proc. of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, Dec.2006. [40] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Contr. vol. AC-22, no. 2, pp. 212–222, Apr. 1977. [41] S. Janardhanan, and B. Bandyopadhyay “Output feedback sliding-mode control for uncertain systems using fast output sampling technique,” IEEE Trans. Ind. Electron., vol. 53, no. 5, Oct. 2006. [42] A.J. Koshkouei, K.J. Burnham and A.S.I. Zinober “Dynamic sliding mode control design,” IEE Proc.-Control Theory Appl., vol. 152, no. 4, Jul. 2005. [43] S. Janardhanan and B. Bandyopadhyay “Multirate output feedback based robust quasi-sliding mode control of discrete-time systems,” IEEE Trans. Automat. Contr., vol. 52, no. 3, Mar. 2007. [44] S. Janardhanan, and B. Bandyopadhyay “Output feedback sliding-mode control for uncertain systems using fast output sampling technique,” IEEE Trans. Ind. Electron., vol. 53, no. 5, Oct. 2006. [45] H. Ma, G. Y. Tang and H. H. Wang “Optimal control for discrete time bilinear system with persistent disturbances,” in Proc. of the 6th World Congress on Intelligent Control and Automation, Dalian, China Jun. 2006.
|