跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳文政
研究生(外文):Wen-Cheng Chen
論文名稱:多變量離散時間雙線性系統之滑動模式控制器設計
論文名稱(外文):SLIDING MODE CONTROLLER DESIGN FOR MULTIVARIABLE DISCRETE-TIME BILINEAR SYSTEMS
指導教授:龔宗鈞
指導教授(外文):Chung-Chun Kung
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:52
中文關鍵詞:半滑動模式控制
外文關鍵詞:quasi sliding mode control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們考慮一個多變量離散雙線性系統,並採用兩種半滑動模式控制理論迫近法則獲得兩種迫近控制法則,然後運用這兩種迫近控制法則,驅動受控系統之狀態朝向滑動面帶,而且系統狀態於有限時間內將會維持在滑動面帶內,最後這些設計方法將藉由兩個例子來說明,並且將驗證本文所提出之控制器對此系統之可行性。
In this thesis, the multivariable discrete time bilinear systems are considered. We adopt two kinds of reaching law that used by quasi-sliding mode control theory to obtain two reaching control laws. Then we apply two reaching control laws which drive the state of the controlled system to a band around the sliding surface. And the system states will remain in a band in finite time. Finally the design techniques are illustrated through two numerical examples. They will demonstrate the feasibility of the proposed controller.
ACKNOWLEDGEMENTS I
ABSTRACT (IN ENGLISH) II
ABSTRACT (IN CHINESE). III
TABLE OF CONTENTS. IV
LIST OF FIGURES.VI
CHAPTER
1 INTRODUCTION 1
2 PROBLEM FORMULATION 4
2.1 System Description 4
2.2 Control Objective.4
3 QUASI-SLIDING MODE CONTROLLER DESIGN.5
3.1 Description of Quasi-Sliding Mode Control.5
3.2 The Design Method of Quasi-Sliding Mode7
3.3 The First Kind of Reaching Law7
3.4 The Second Kind of Reaching Law13
4 SIMULATION EXAMPLES.17
4.1 Example 117
4.2 Example 2 30
5 CONCLUSION36
REFERENCES.37
ACKNOWLEDGEMENTS.I
ABSTRACT (IN ENGLISH) II
ABSTRACT (IN CHINESE) III
TABLE OF CONTENTS. IV
LIST OF FIGURES. VI
CHAPTER
1 INTRODUCTION1
2 SYSTEM DESCRIPTION 4
2.1 Problem Description.4
2.2 State Transformation Method of Discrete-Time Systems5
3 DISCRETE TIME SLIDING MODE CONTROL DESIGN 8
3.1 Sliding Switching Function Design8
3.2 Sliding Mode Controller Design 10
3.3 Derivation of the Quasi-Sliding Mode Band11
4 SIMULATION EXAMPLES.18
4.1 Example 118
4.2 Example 226
5 CONCLUSION34
REFERENCES. 35
[1] M. Espana and I. D. Landau, “Reduced order bilinear models for distillation columns,” Automat., vol. 14, pp. 345-355, Jul. 1978.
[2] H. N. Koivo and R. Cojocariu, “An optimal control for flotation circuit,” Automat., vol. 13, pp. 37-45, Jan. 1977.
[3] M. S. Mousa, R. K. Miller, and A. N. Michel, “Stability analysis of hybrid composite dynamical systems: Descriptions involving operators and differential equations,” IEEE Trans. Automat. Contr., vol. AC-31, pp.216-226, Jun. 1986.
[4] M. S. Mousa, R. K. Miller, and A. N. Michel, “Stability analysis of hybrid composite dynamical systems: escriptions involving operators and difference equations, ” IEEE Trans. Automat. Contr., vol. AC-31, pp. 603-615, Jun. 1986.
[5] T. Ionescu and R. V. Monopoli, “On the stabilization of bilinear systems via hyperstability,” IEEE Trans. Automat. Contr., vol. AC-20, pp 280-284, Apr. 1975.
[6] R. Longchamp, “Stable feedback control of bilinear systems,” IEEE Trans. Automat. Contr., vol. AC-25, pp.37-45, Apr. 1980.
[7] J. P. Quinn, “Stabilization of bilinear systems by quadratic feedback controls,” J . Math. Anal. Appl., vol. 75, pp. 66-80, May 1980.
[8] P. O. Gutman, “Stabilizing controllers for bilinear systems,” IEEE Trans. Automat. Contr., vol. AC-26, pp. 917-922, Aug. 1981.
[9] C. Gounaridis and N. Kalouptsidis, “Stablility of discrete-time bilinear systems with constant inputs,” Int. J. Contr., vol. 43, pp..663-669, Feb. 1986.
[10] M. Slemrod, “Stabilization of bilinear control systems with applications to nonconservative problems in elasticity,” SIAM J. Contr. Optimiz., vol. 16, pp. 131-141, Jan. 1978.
[11] X. Yang, L. K. Chen, and R. M. Burton, “Stability of bilinear systems with output feedback,” Int. J. Contr., vol. 50, no. 5, pp 2085-2092, Nov. 1989.
[12] R. Longchamp, “Controller design for bilinear systems,” IEEE Trans. Automat. Contr., vol. 25, no. 3, pp. 547–548, Jun. 1980.
[13] P. O. Gutman, “Stabilizing controllers for bilinear systems,” IEEE Trans. Automat. Contr., vol. 26, no. 4, pp. 917–922, Apr. 1981.
[14] D. E. Koditschek and K. S. Narendra, “Stabilizability of second-order bilinear systems,” IEEE Trans. Automat. Contr., vol. 28, no. 10, pp.987–989, Oct. 1983.
[15] E. P. Ryan and N. J. Buckingham, “On asymptotically stabilizing feedback control of bilinear systems,” IEEE Trans. Automat. Contr., vol. 28, no. 8, pp. 863–864, Aug. 1983.
[16] R. Genesio and A. Tesi, “The output stabilization of SISO bilinear systems,” IEEE Trans. Automat. Contr., vol. 33, no. 10, pp. 950–952, Oct. 1988.
[17] R. Luesink and H. Nijmeijer, “On the stabilization of bilinear systems via constant feedback,” Lin. Alg. Appl., vol. 122–124, pp. 457–474, Sep.-Nov. 1989.
[18] L. K. Chen, X Yang, and R. R. Mohler “Stability analysis of bilinear systems,” IEEE Trans. Automat. Contr., vol. 36, no. 11, Nov. 1991.
[19] X. S. Yang and L. K. Chen “Stability of discrete bilinear system with time-delayed feedback function,” IEEE Trans. Automat. Contr., vol. 38, no. 1, Jan. 1993.
[20] M. S. Chen and S. T. Tsao, “Exponential stabilization of a class of unstable for bilinear systems,” IEEE Trans. Automat. Contr., vol. 45, no. 5, pp. 989–992, May 2000.
[21] M. S. Chen, “Exponential stabilization of constrained bilinear systems,” IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 989–992, Aug. 1998.
[22] M. Bacic, M. Cannon, and B. Kouvaritakis, “Constrained control of SISO bilinear systems,” IEEE Trans. Automat. Contr., vol. 48, no. 8, pp. 1443–1447, Aug. 2003.
[23] M. Frayman, “On the relationship between bilinear and quadratic systems,” IEEE Trans. Automat. Contr., vol. 20, no. 4, pp. 567–568, Aug. 1975.
[24] H. D. Chiang, M. W. Hirsch, and F. F. Wu, “Stability regions of nonlinear autonomous dynamical systems,” IEEE Trans. Automat. Contr., vol. 33, no. 1, pp. 16–27, Jan. 1988.
[25] H. D. Chiang and J. S. Thorp, “Stability regions of nonlinear dynamical systems: a constructive methodology,” IEEE Trans. Automat. Contr., vol. 34, no. 12, pp. 1229–1241, Dec. 1989.
[26] A. Tesi, F. Villoresi, and R. Genesio, “On the stability domain estimation via a quadratic Lyapunov function: convexity and optimality properties for polynomial systems,” IEEE Trans. Automat. Contr., vol. 41, no. 11, pp. 1650–1657, Nov. 1996.
[27] G. Chesi, A. Tesi, A. Vicino, and R. Genesio, “On convexification of some minimum distance problems,” in Proc. of the 5th Eur. Control Conf., Karlsruhe, Germany, Aug. 1999.
[28] B. Tibken, “Estimation of the domain of attraction for polynomial systems via LMI’s,” in Proc. of 39th IEEE Conf. Decision Contr., Sydney, Australia, pp. 3860–3865, Dec. 2000.
[29] B. Tibken and Hachicho, “Estimation of the domain of attraction for polynomial systems using multidimensional grid,” in Proc. of the 39th IEEE Conf. Decision Contr., Sydney, Australia, pp. 3870–3874, Dec. 2000.
[30] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Solving quadratic distance problems: An LMI-based approach,” IEEE Trans. Automat. Contr., vol. 48, no. 2, pp. 200–212, Feb. 2003.
[31] G. Chesi, “Estimating the domain of attraction for uncertain polynomial systems,” Automat., vol. 40, no. 11, pp. 1981–1986, Nov. 2004.
[32] G.Chesi, “Computing output feedback controllers to enlarge the domain of attraction in polynomial systems,” IEEE Trans. Automat. Contr., vol. 49, no. 10, pp. 1846–1850, Oct. 2004.
[33] F. Amato, C. Cosentino, and A. Merola, “On the region of attraction of nonlinear quadratic systems,” Automat., vol. 43, no. 12, pp. 2119-2123, Dec. 2007.
[34] I. Derese and E. Noldus, “Design of linear feedback laws for bilinear systems,” Int. J. Contr., vol. 31, no. 2, pp. 219–237, Feb. 1980.
[35] K. Furuta, “Sliding mode control of a discrete system,” Syst. Contr. lett., vol. 14, pp. 144-152, Feb. 1990.
[36] W. B. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 117-122, Apr. 1995.
[37] A. Bartoszewicz, “Discrete-time quasi-sliding-mode control strategies,” IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 633–637, Aug. 1998.
[38] C. Y. Tang and E. A. Misawa, “Discrete variable structure control for linear multivariable systems: the state feedback case,” in Proc. of the American Control Conference Philadelphia, Pennsylvania Jun. 1998.
[39] Y. Zheng, Y. W. Jing and G. H. Yang “Design of approximation law for discrete-time variable structure control systems,” in Proc. of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, Dec.2006.
[40] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Contr. vol. AC-22, no. 2, pp. 212–222, Apr. 1977.
[41] S. Janardhanan, and B. Bandyopadhyay “Output feedback sliding-mode control for uncertain systems using fast output sampling technique,” IEEE Trans. Ind. Electron., vol. 53, no. 5, Oct. 2006.
[42] A.J. Koshkouei, K.J. Burnham and A.S.I. Zinober “Dynamic sliding mode control design,” IEE Proc.-Control Theory Appl., vol. 152, no. 4, Jul. 2005.
[43] S. Janardhanan and B. Bandyopadhyay “Multirate output feedback based robust quasi-sliding mode control of discrete-time systems,” IEEE Trans. Automat. Contr., vol. 52, no. 3, Mar. 2007.
[44] S. Janardhanan, and B. Bandyopadhyay “Output feedback sliding-mode control for uncertain systems using fast output sampling technique,” IEEE Trans. Ind. Electron., vol. 53, no. 5, Oct. 2006.
[45] H. Ma, G. Y. Tang and H. H. Wang “Optimal control for discrete time bilinear system with persistent disturbances,” in Proc. of the 6th World Congress on Intelligent Control and Automation, Dalian, China Jun. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top