跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施均輔
研究生(外文):Chun-Fu Shih
論文名稱:差動彎曲微帶線的相位差之補正
論文名稱(外文):Phase Redress for the Bend on Differential Microstrip Lines
指導教授:黃啟芳黃啟芳引用關係
指導教授(外文):Chi-Fang Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:61
中文關鍵詞:差動彎曲微帶線相位差補正
外文關鍵詞:Techniques for Phase RedressBend on Differential Microstrip Lines
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
現今在多元化的電子產品的電路板設計與應用中, 一般的單端傳輸電路只適合運用於低速傳輸是目前研發工程師所知的常識, 而用於高速有線傳輸最常使用的則是差動傳輸電路, 其電路有著高抗雜訊的優點, 但其線路有著高訊號品質、不失真、傳輸速度必須相同的要求,為研發工程師在設計任何系統電路所必須考量的因素之一。
但在繁雜的系統電路板中存在的大量集成電路以及電路板的尺寸在成本的考量差動傳輸電路在PCB (Print Circuit Board)layout的空間要求越來越小,在有限的電路板空間以及差動傳輸電路必須閃躲相鄰近的集成電路的零件,如何讓差動傳輸電路在複雜的電路板中達到不被干擾而達到差動傳輸電路所要求的高訊號品質、不失真、傳輸速度必須相等的標準,其中以轉90°彎的作法來達到減少線路阻抗的不匹配而造成的失真是一個很好的電路板設計方法,但90°轉彎差動傳輸電路的缺點會讓兩傳輸線因為不等長而造成差動信號的不同步延遲所產生的問題是本論文所要克服和探討的課題。
本論文主要是提出的方法是在Bend differential line 旁邊產生L,C改善和分析差動線在轉彎時因為不等長所造成的 phase delay 及觀察此方法可使用的頻寬範圍,再 CST 來模擬各90°轉彎差動傳輸電路結構的時間差異,然後以TDR量測的結果在 IPA510 軟題中萃取出Lump circuit的各個參數在Micro wave office 中分析其差異,最後以量測出及驗證結果差異。
除了本論文的改善方法外, 也有人提出UC-PBG ( Un-planar compact Photonic Band-Gap )的方法在Ground plane上刻出一些cell 使迴路產生L與C 的效果, 以Slow wave的技術來改善差動信號不等長所產生信號的不同步延遲所產生的問題, 另一種是直接在Microstrip Line上使用 Meander line來延遲差動線路不等長的問題. 但UC-PBG的技術PCB製造的複雜會有成本高的缺點, 而Meander line的技術當線在轉彎和線距較近時易造成阻抗不匹配的缺點,所以都不是理想的技術。
The electronic industry PCB circuit design of product . The conventional signal-end transmission working on low speed in design engineer knowledge. The differential transmission line used in circuit is very popular application. The Advantages of differential transmission line are of fast transmission speed , immunity against electromagnetic interference, But the drawback is necessary to support 2 symmetry characteristic transmission line need same impedance and equalize propagation delay, the differential signal will not distortion and function down.
But electronic industry product and PCB size is very small of specification for cost down . A lots component will mounting on PCB. It will reduce differential transmission space and path to straight connect with component or chip input . How to meet and support 2 symmetry characteristic transmission line need same impedance and equalize propagation delay . In this thesis we will find out solution.
The object of this thesis is to propose a method for compensate as un-desired phase delay cause by unequal-length differential transmission lines. The propagation delay of a bend of differential transmission lines can be improved by disposing structure to the unequal length differential transmission lines. In this thesis release method is added transmission line into bend of transmission line two side . It will coupling two line and cause inductor and capacitor effect of lump circuit structure to improved unequal length differential transmission propagation delay problem. We use CST simulation software to simulate 90° find propagation delay problem and try to find some technique of solution to solve problem. Than use TDR to extract lump element into AWR program from bend of differential transmission line fixture and added line into bend of differential transmission line fixture also AWR program simulation time delay of result .
Finally we use oscilloscope to measurement all fixture and compare with simulation data. We are not consider UC-PBG and Meander line additional method because complex structure and high cost issue not good for electronic industry product usable.
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objective 2
1.3 The configuration of this thesis [1][2] 2
Chapter 2 Theory 4
1.3 The characteristic of Microstrip line [14] 5
2.2 The characteristic of Coupled Microstrip line [14] 6
2.3 The Differential line with Odd/Even Mode [14] 8
2.4 The characteristic of Rounded Bend Microstrip line [14] 9
2.5 The Theory of TDR [2][5] 11
2.6 The Theory of SPICE Model Extraction [6][11] 13
2.7 The Theory of Even /Odd Mode Measurement 19
2.8 Parasitical line with differential transmission lines conductors 21
Chapter 3 Simulation 24
3.1 Simulation of CST [8] 24
3.2 One straight differential Microstrip line simulation 24
3.3 The Bend of differential Microstrip line simulation 25
3.4 Technique for the bend of differential microstrip line 26
3.5 The phase delay calculated between two unequal the bend of differential microstrip line [14] 29
3.6 Parasitical line with Bend of differential Microstrip line section 29
3.6.1 The 1.5mm parasitical line with the bend of differential Microstrip line inner side 30
3.6.2 The 3.0mm parasitical line with the bend of differential Microstrip line inner side 31
3.6.3 The 4.5 mm parasitical line with the bend of differential Microstrip line inner side 32
3.6.4 The 9.0mm parasitical line with the bend of differential Microstrip line inner side 33
3.6.5 The 1.5mm parasitical line with the bend of differential Microstrip line outer side 34
3.6.6 The 3.0mm parasitical line with the bend of differential Microstrip line outer side 35
3.7 Review CST simulation result of all modeling 37
Summary 37
Chapter 4 Measurement [7] [9] 39
4.5 Review AWR simulation result of all modeling 50
4.5 Measurement all fixture 51
4.6 Comparison for Simulated and Measured test Results 57
Chapter 5 CONCLUSIONS 59
References 60
[1] Kipp Schoen, “S-parameter Measurements with a High-Speed TDR and TDT System, ” Picosecond Pulse Labs (PSPL), Boulder, Colorado, USA.
[2] HP Corporation 1304-1, Evaluation Microstrip with time Domain Reflectometry, Application Note.
[3] B. J. Rubin and Bhupindra Singh, “Study of Meander Line Delay in Cir-cuit Boards,” IEEE transaction Microwave Theory and Techniques. Vol. 48, pp. 1452-1460, Sept. 2000.
[4] W. J. Getsinger, “Micro-strip Characteristic Impedance,” IEEE Transactions on Microwave Theory and Techniques, vol. 27, pp. 293 – 293, Apr. 1979.
[5] S. Pannala, A. Haridass ,and M. Swaminathan, “Parameter extraction and electrical characterization of high density connector using time domain measurements,” IEEE transactions on advanced packaging, Vol. 22, pp. 32–39, Feb. 1999.
[6] Tektronix Co., TDR Impedance Measurements: A Foundation for Signal Integrity, Tektronix Technical document, 55w-14601-1, 2005.
[7] V. Chen, TDS/CSA 8000 and 80E04 功能好壞之最簡易判斷, Tektronix technical document, pp. 293 – 294 Nov. 2004.
[8] Company of APLAC solution Corporation. CST DESIGN STUDIO. Avaible:http://www.cst.com, [Accessed : Dec 29, 2009].
[9] Company of AWR Corporation. Microwave Office. Available: http://web.appwave.com/Products/Microwave_Office/Overview.php, [Accessed : Dec 29, 2009].
[10] J. M. Jong and V. K. Tripathi, “Time-domain characterization of interconnect discontinuities in high-speed circuits,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, pp. 497–504, Aug. 1992.
[11] S. Diamond and B. Janko, ”Extraction of coupled SPICE models for packages and
interconnects, ” in Test Conference, Baltimore, MD, pp. 436–445, Oct. 17 - 21, 1993
[12] D. A. Smolyansky and S. D. Corey, “Computing Self and Mutual Capacitance and Inductance Using Even and Odd TDR Measurement,” IEEE conference of Electrical Performance of Electronic Packaging, pp. 117-122, 2002.
[13] A. Tolescu and P. Slvasta, “Characterization of differential interconnects from time domain reflectometry measurements,” in Electronics Technology: Concurrent Engineering in Electronic Packaging, Calimanesti-Caciulata, pp. 298–301, May 5 - 9, 2001.
[14] C. B. Wadell, Transmission Line design Handbook, Boston : Atrech House, 1991.
[15] Stephen H. Hall, Garrett W. Hall ,and James A McALL, “High Speed system Design,” JOHN WILEY AND SONS, pp. 12-13 , Inc. 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top