跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/13 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志堅
研究生(外文):Chih-Chien Huang
論文名稱:在水下感測網路中設計公平的MAC傳輸
論文名稱(外文):SF-MAC: A Spatial Fairness MAC Protocol for Underwater Acoustic Sensor Networks
指導教授:廖文華廖文華引用關係
指導教授(外文):Wen-Hwa Liao
學位類別:碩士
校院名稱:大同大學
系所名稱:資訊經營學系(所)
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
論文頁數:80
中文關鍵詞:移動水下感測網路公平性
外文關鍵詞:mobileunderwater sensor networksfairness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
雖然已有許多發展於陸地上無線感測網路傳輸的媒介存取控制協定,但這些協定在水下的環境中並不適用。水下環境具有較大傳輸延遲、低頻寬、節點移動…等特性,在協定的設計上面臨許多挑戰,例如空間與時間的不確定性以及空間的不公平性。本論文提出一種媒介存取控制協定解決空間的不公平性,利用機率法則探討每個競爭者最先傳送的機率。首先我們的方法是利用延遲RTS CP時間回覆CTS,避免一些不必要的碰撞。接收端考慮在RTS CP內收到的所有RTS,估計其可能的傳送時段,並透過我們所提出的機率法則與第一個收到的RTS比較,決定其中最先傳送的競爭者並回覆CTS,達到公平性的傳輸。由於我們的方法能夠在每一次競爭時,維持公平的傳輸;因此當多個傳送端傳送資料時,我們也能夠維持在網路中傳輸順序的公平性。此外我們的方法能夠確保在一次RTS/CTS交握之後,不會有任何資料碰撞的狀況發生,因而能夠避免多餘的競爭所產生的時間浪費,因此在頻道使用率與網路傳輸量的部分也能夠維持較好的表現。在移動式的感測網路中,我們的方法不需要計算其傳輸延遲或位置,因此也能避免因節點移動造成的傳輸碰撞的問題發生,使網路整體效率能有效改善。
實驗結果顯示當競爭者越多,我們的方法仍能維持大約40%的準確率,以及90%的公平性,因而在公平性上能夠優於MACA、MACA-U以及T-Lohi。就頻道使用率而言,比起MACA、MACA-U以及T-Lohi更為有效率,在整體傳輸量也有較好的表現。
Many media access control protocols for the terrestrial networks have been proposed. When it comes to underwater environment, these protocols become not suitable. Long propagation delays, low bit rates and sensor mobility cause many challenge for MAC protocol design, such as space time uncertainty and spatial unfairness. Arriving time of packets are depend on both the sending time and distance from transmitter to receiver. It is difficult to avoid collision and guarantee the transmission fairness. In this thesis, we consider spatial unfairness problem in UWSN and proposed a spatial fairness MAC protocol: SF-MAC. SF-MAC can avoid collision through postponing CTS frame with a RTS CP. Receiver considers the potential sending time of each contender in RTS CP and determine the earliest transmitter with a probability rule that compare with the first RTS. SF-MAC can maintain more exact transmission order with multiple contenders to achieve fairness transmission because of responding CTS to the earliest transmitter in each contention. In addition, SF-MAC guarantees that the transmission can succeed while RTS/CTS handshake completely. Throughput can maintain better without unnecessary contention. In mobile sensor networks, the collision problem caused by sensor mobility can be avoid with considering the propagation delay or distance between each node, and make networks performance more efficiency.
Simulation results show that while the contenders are increase, our protocol can maintain about 40% successful rate of responding CTS and 90% fairness index and better than MACA、MACA-U以及T-Lohi. SF-MAC can also make higher channel utilization with higher throughput to achieve well network performance.
ACKNOWLEDGEMENTS I
CHINESE ABSTRACT II
ENGLISH ABSTRACT III
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 RELATED WORK 5
CHAPTER 3 SPATIAL FAIRNESS MAC PROTOCOL 8
CHAPTER 4 ANALYTICAL MODEL 19
CHAPTER 5 SIMULATION RESULTS 23
CHAPTER 6 CONCLUSION 31
BIBLIOGRAPHY 32
謝誌 I
中文摘要 II
英文摘要 III
第一章 簡介 1
第二章 文獻探討 5
第三章 空間公平性MAC傳輸 8
第四章 分析模型 18
第五章 實驗結果 21
第六章 結論 30
參考文獻 31
[1]I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater Acoustic Sensor Networks: Research Challenges,” Ad Hoc Networks, Vol. 3, No. 3, 2005, pp. 257-279.
[2]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks,” IEEE Communications Magazine, Vol. 40, No. 8, 2002, pp. 102-114.
[3]V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. “MACAW: A Media Access Protocol for Wireless LAN’s,” ACM Special Interest Group on Data Communications Conference (SIGCOMM), vol. 24, no. 4, 1994, pp. 212–25.
[4]N. Chirdchoo, W.-S. Soh, and K.-C. Chua, “RIPT: A Receiver-initiated Reservation-based Protocol for Underwater Acoustic Networks,” IEEE Journal on Selected Areas in Communication (JSAC),Vol. 26, No. 9, 2008, pp. 1744-1753.
[5]N. Chirdchoo, W.-S. Soh, and K. C. Chua, “MACA-MN: A MACA-based MAC Protocol for Underwater Acoustic Networks with Packet Train for Multiple Neighbors,” IEEE Vehicular Technology Conference (VTC), 2008.
[6]I. Demirkol, C. Ersoy, and F. Alagöz, “MAC Protocols for Wireless Sensor Networks: A Survey,” IEEE Communications Magazine, Vol. 44, No. 4, 2006, pp. 115-121.
[7]P. Guo, T. Jiang, G. Zhu, and H.-H. Chen, “Utilizing Acoustic Propagation Delay to Design MAC Protocols for Underwater Wireless Sensor Networks,” Wireless Communications & Mobile Computing, Vol. 8, No. 8, 2008, pp. 1035-1044.
[8]X. Guo, M. Frater, and M. Ryan, “Design of a Propagation-Delay-Tolerant MAC Protocol for Underwater Acoustic Sensor Networks,” IEEE Journal of Oceanic Engineering, Vol. 34, No. 2, 2009, pp. 170-180.
[9]X. Guo, M. Frater, and M. Ryan, “An Adaptive Propagation Delay Tolerant Collision Avoidance Protocol for Underwater Acoustic Sensor Networks, ” IEEE Oceans Europe, 2007.
[10]J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research Challenges and Applications for Underwater Sensor Networking,” IEEE Wireless Communications and Networking Conference (WCNC), 2006.
[11]C.-C. Hsu, K.-F. Lai, C.-Fu Chou, and K.-J. Lin, “ST-MAC: Spatial-Temporal MAC Scheduling for Underwater Sensor Networks,” IEEE Internation Conference on Computer Communications (INFOCOM), 2009.
[12]R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems,” Digital Equipment Corp., Hudson, MA, DEC Res. Rep. TR-301, 1984.
[13]K. Kredo, P. Djukic, and P. Mohapatra, “STUMP: Exploiting Position Diversity in the Staggered TDMA Underwater MAC Protocol,” IEEE Internation Conference on Computer Communications (INFOCOM), 2009.
[14]K. B. Kredo II and P. Mohapatra, “A Hybrid Medium Access Control Protocol for Underwater Wireless Networks,” ACM the Second Workshop on Underwater Networks (WuWNet), 2007.
[15]Z. Li, Z. Guo, H. Qu, F. Hong, P. Chen, and M. Yang, “UD-TDMA: A Distributed TDMA Protocol for Underwater Acoustic Sensor Network,” IEEE Mobile Adhoc and Sensor Systems (MASS), 2009.
[16]W.-H. Liao and H.-H. Wang, “An Asynchronous MAC Protocol for Wireless Sensor Networks,” Journal of Network and Computer Applications, Vol. 31, No. 4, 2007, pp. 807-820.
[17]J. Ma, W. Lou, Y. Wu, X.-Y. Li, and G. Chen, “Energy Efficient TDMA Sleep Scheduling in Wireless Sensor Networks,” IEEE Internation Conference on Computer Communications (INFOCOM), 2009.
[18]M. Molins and M. Stojanovic, “Slotted FAMA: A MAC Protocol for Underwater Acoustic Networks,” IEEE Oceans Asia Pacific, 2007.
[19]H. H. Ng, W. S. Soh, and M. Motani, “MACA-U: A Media Access Protocol for Underwater Acoustic Networks,” IEEE Global Telecommunication Conference (Globecom), 2008.
[20]V. Ngo and A. Anpalagan, “A Detailed Review of Energy-Efficient Medium Access Control Protocols for Mobile Sensor Networks,” Computers and Electrical Engineering, Vol. 36, No. 2, 2010, pp. 383-396.
[21]M. Park and V. Rodoplu, “UWAN-MAC: An Energy-Efficient MAC Protocol for Underwater Acoustic Wireless Sensor Networks,” IEEE Journal of Oceanic Engineering, Vol. 32, No. 3, 2007, pp. 710-720.
[22]J. Partan, J. Kurose, and B. N. Levine, “A Survey of Practical Issues in Underwater Networks,” ACM the Second Workshop on Underwater Networks (WuWNet), 2006.
[23]D. Pompili, T. Melodia, and I. Akyildiz, “A CDMA-Based Medium Access Control for Underwater Acoustic Sensor Networks,” IEEE Transaction on Wireless Communication, Vol. 8, No. 4, 2009, pp. 1899-1909.
[24]K.-P. Shih, W.-H. Liao, H.-C. Chen and C.-C Li, “On Avoiding RTS Collisions for IEEE 802.11-based Wireless Ad Hoc Networks,” Computer Communications, Vol. 32, No. 1, 2009, pp. 69-77.
[25]D. Shin and D. Kim, “Order CSMA: A Collision-free Mac Protocol for Underwater Acoustic Networks,” IEEE Oceans, 2007.
[26]D. Shin and D. Kim, “A Dynamic NAV Determination Protocol in 802.11 Based Underwater Networks,” IEEE International Symposium on Wireless Communication Systems (ISWCS), 2008.
[27]A. Syed, W. Ye, and J. Heidemann “T-Lohi: A New Class of MAC Protocols for Underwater Acoustic Sensor Networks,” IEEE Internation Conference on Computer Communications (INFOCOM), 2008.
[28]A. Syed, W. Ye, B. Krishnamachari, and J. Heidemann, “Understanding Spatio Temporal Uncertainty in Medium Access with ALOHA Protocols,” ACM the Second Workshop on Underwater Networks (WuWNet), 2007.
[29]P. Wang and W. Zhuang, “A Collision-free MAC Scheme for Multimedia Wireless Mesh Backbone,” IEEE International Conference on Communications (ICC), 2008.
[30]P. -J. Wu and C.-N. Lee, “Connection-oriented Multi-channel MAC Protocol for Ad-hoc networks,” Computer Communications, Vol. 32, No. 1, 2009, pp. 169-178.
[31]P. Xie and J.-H. Cui, “R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks,” IEEE International Conference on Wireless Algorithms, Systems and Applications (WASA), 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top