跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:毛政仁
研究生(外文):Cheng-Jen Mao
論文名稱:網路口碑與沉迷經驗對線上遊戲持續使用意圖之研究-以科技準備度為干擾變數
論文名稱(外文):THE IMPACT OF ELECTRONIC WORD-OF-MOUTH AND FLOW EXPERIENCE ON CONTINUANCE INTENTION:TECHNOLOGY READINESS AS MODERATOR
指導教授:陳煇煌陳煇煌引用關係
指導教授(外文):Prof. Huei-Huang Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:資訊經營學系(所)
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:74
中文關鍵詞:沉迷經驗網路口碑科技接受模式科技準備度持續意圖線上遊戲
外文關鍵詞:Flow experienceElectronic word of mouthTechnology acceptanceTechnology readiness indexContinuance intentionsOnline games
相關次數:
  • 被引用被引用:40
  • 點閱點閱:2136
  • 評分評分:
  • 下載下載:982
  • 收藏至我的研究室書目清單書目收藏:2
線上遊戲是目前商業市場上成長最迅速的產業之一,它是以娛樂導向為目的,且與消費者的使用經驗有關係。估計2010年的線上遊戲全球產值將達1億3千萬美金。科技接受模式(TAM)中所包括的知覺易用(PE)、知覺有用(PU)都為新科技探討持續使用的模式裡是常常被接受檢驗的。此外網路口碑(E-WOM)及沉迷經驗(FE)亦是影響線上遊戲持續意圖(CI)的重要因子。然而這些因子並不能完全精確的被驗證於此模式,因此如何明確分辨會影響線上遊戲持續意圖的干擾因子是必須的。
本研究目的以探討科技接受模式、沉迷經驗、網路口碑影響持續遊戲意圖為主軸,並輔以科技準備度(TRI)的干擾效果來探討線上遊戲玩家的持續意圖之影響。
研究對象為線上遊戲的網路使用者為研究母體,採用網路結構性問卷進行, 共收集有效問卷686份。樣本中男性佔79.2%,年齡30歲以下佔87.9%,教育程度大學、大專院校佔57.6%,其次為高中、國中佔39.03%,在職業方面學生族群佔整體樣本57.7%,上班族群佔30.17%。而習慣每天均上網遊戲的研究對象高達59.5%,每次上網遊戲時間以1~5小時佔64.1%,5~10小時者則有23.2%。
本研究使用結構方式模式(SEM)分析,其結果顯示正向網路口碑、知覺有用及沉迷經驗對持續意圖有正向的顯著關係,負面網路口碑對於持續意圖為負向顯著影響。而科技準備度除了正面網路口碑影響持續意圖無干擾作用以外,對其他構面影響持續意圖皆有著顯著的干擾作用。
Online game is a burgeoning business market sector with growth potential and the market is developing rapidly, the entertainment-oriented features of such online games play experience motives for users, the market of the global of the games will reach US$ 1.3billin annually approximately.
Technology acceptance model(TAM), including perceived ease of use(PE)and perceived usefulness(PU)and intentions in accepting new technologies, is one of the most widely examined models used to test the consumers acceptance of new information technology. Electronic word of mouth(EWOM)and flow experience(FE)also influence continuance intentions of online games. However, the introduction of these factors was not utilized accurately. Therefore, the challenge presented here for service provider is to identify the key obstacles affecting the continuance intentions of online games. In this study, we examine the role of TAM、FE and assess the influence of TRI on these factors toward continuance intentions of online games.
This model was tested with the data from 686 current online game players who answered a structure questionnaire with online survey effectively.
Eighty percent of the study subjects were males, 87.77% was age under 30 years old, and 56.42% was college/university graduated. Over half of the studied subjects were still students, the every day online game players were higher to 70%, 63% online game players spent 1~5 hour online every time, and 23% for 5~10 hours, respectively. The structural equation model analysis confirmed that positive WON、FE and PU have a positive effect on continuance intention with statistically significantly. The study also concluded that TRI was significant effect on the relation between the studied factors and continuance intention except on the relation between positive electronic word of mouth and continuance intention.
目錄
ABSTRACT i
摘要 ii
圖目錄 iv
表目錄 v
第一章 緒論 1
1.1 研究動機 2
1.2 研究目的 2
第二章 文獻探討 3
2.1 網路口碑 (Electronic Word of Mouth) 3
2.2 沉迷經驗 (Flow Experience) 4
2.3 科技接受模式 (Technology Acceptance Model) 4
2.4 科技準備度 (Technology Readiness Index) 5
2.5 線上遊戲的產品特性 6
2.6 口碑傳播與市場行家之特質 6
2.7 科技準備度與網路口碑之關係 6
2.8 科技準備度與科技接受模式之關係 7
2.9 科技準備度與沉迷經驗之關係性 7
第三章 研究方法及假設 8
3.1研究假設 8
3.1.1 網路口碑與知覺有用 8
3.1.2 知覺易用與知覺有用 8
3.1.3 知覺易用與沉迷經驗 8
3.1.4 網路口碑與持續(遊戲)意圖 8
3.1.5 科技接受模式與持續(遊戲)意圖 9
3.1.6 沉迷經驗與持續(遊戲)意圖 9
3.1.7 干擾變數-科技準備度 9
3.2 研究對象 10
3.3 網路問卷之優缺點 10
3.4 採樣 11
3.5 有效問卷率 11
3.6 統計工具 11
3.7 採樣問卷設計 11
3.7.1 受測者問卷(第一部份) 11
3.7.2 受測者問卷(第二部份) 11
3.7.3 填卷者個人基本資料 13
第四章 結果 15
4.1 敘述性統計 15
4.1.1樣本結構敘述統計 15
4.1.2 線上遊戲經驗敘述統計 15
4.2信度分析 16
4.3統計效度 17
4.3.1內容效度 17
4.3.2收斂效度 (convergent validity) 19
4.3.3區別效度 (discriminant validity) 20
4.3.4交叉效度 (cross validity) 21
4.4模式適配度檢定 22
4.4.1 測量模式之模型適配度分析 22
4.5結構方程模式 23
4.5.1 驗證模式之模型配適度分析 23
4.5.2路徑分析分析結果 23
4.6 中介效果 25
4.7科技準備度對整體研究架構模型之干擾效果分析 25
4.7.1干擾效果整體分析結果: 26
4.8 研究假設結果 26
第五章 討論 28
5.1 基本人口學資料之討論 28
5.2 知覺有用對於持續(遊戲)意圖之影響 28
5.3 知覺易用對於持續(遊戲)意圖之影響 28
5.4 知覺易用對於知覺有用之影響 28
5.5 正面與負面網路口碑對於持續(遊戲)意圖及知覺有用之影響 29
5.6 知覺易用對於沉迷經驗之影響 29
5.7 沉迷經驗對於持續(遊戲)意圖之影響 29
5.8 科技準備度對各構面影響持續意圖之干擾效果 29
第六章 管理意涵、研究限制及未來研究方向 31
6.1 管理意涵 31
6.2 研究限制 31
6.3 未來研究方向 32
參考文獻 33
中文部份 33
英文部分 33
附錄 38

圖目錄
圖 3.1、研究假設架構 10
圖 4.1、路徑分析結果 24

表目錄
表 3.1、問卷問項與文獻來源 11
表 4.1、受測者基本資料及線上遊戲經驗統計 16
表 4.2、各構面變項之組成信度 16
表 4.3、各構面變項常態分佈情形 18
表 4.4、各構面變項常態分佈情形(續) 18
表 4.5、各構面變項因素負荷量與平均萃取變異量 19
表 4.6、各構面變項之區別效度 20
表 4.7、本研究交叉效度分析 21
表 4.8、適配度檢定 (測量模式) 22
表 4.9、適配度指標 (驗證模式) 23
表 4.10、未標準化及標準化迴歸係數 24
表 4.11、中介效果分析 25
表 4.12、科技準備度干擾效果測試結果 25
表 4.13、路徑分析結果 26
表 4.14、TRI干擾假設結果 27
參考文獻
中文部份
[1].方世榮 & 張苑惠。2006年。網路口碑之形成影響因素以網路涉入程度與虛擬社群管理為干擾因素,Journal of e-Business,8(4),pp 499-532。
[2].邱皓政。2003年。結構方程模式: LISREL 的理論技術與應用,雙葉書廊,台北。
[3].李文伶。2002年。網路口碑之影響因素研究。私立元智大學管理研究所碩士論文。
[4].范佳慧。2005年。科技準備度對顧客使用網路自助服務意願之調節效果及顧客滿意,大同大學事業經營研究所碩士論文。
[5].吳佳盈。2005年。影響線上遊戲玩家持續使用行為之研究,國立東華大學企業管理研究所。
[6].湯宗益、廖莉芬。2002年。遠距教學系統人機互動之研究-以Flow理論為基礎,資訊、科技與社會學報,2(2),pp79-94。
[7].楊學成 & 錢明輝。2006。網上口碑對消費者決策的影響及啟示,當代經濟管理,28(3),pp27-31。
[8].蔡美瑛。1995年。消費資訊傳散者資訊尋求行為之研究-以台北市年輕消費族群為例,國立政治大學新聞系研究所未出版之博士論文。
[9].張紹勳。2000年。研究方法。滄海書局。
[10].留淑芳。2003年。網路口耳相傳訊息特性及接受者行為特質對態度形成之影響,國立台灣大學商學研究所碩士論文。
[11].資策會。2003年。家庭連網應用調查,資策會,台北。
[12].資策會。2008年。線上玩家娛樂行為調查,資策會,台北。
[13].資策會。2009年。線上遊戲兩大影響力-口碑效應、熟識玩伴,資策會,台北。
[14].資策會產業情報研究。2009年。口碑效應與朋友是線上遊戲吸引玩家主要因素,台北。
[15].費翠。2001年。網路市場行家理論驗證與延伸-其網路資訊搜尋、口碑傳播、線上購物行為及個人特質研究。國立政治大學廣告研究所碩士論文。
[16].劉立偉。2006年。行動生活、行動秘書、專門找店與找店專門-自助服務科技採用因素與態度、意圖之探討-以手機加值服務為例。國立中正大學企業管理研究所碩士論文。
[17].傅鏡暉。2003年。線上遊戲產業HAPPY書,遠流,台北市。
[18].關復勇、楊亞琦、鄭尹惠。2005年。知覺品質與網路口碑溝通間關係之研究-以顧客承諾為中介角色之分析,行銷評論。

英文部分
[1].Agarwal, R. & Prasad, J. (1999). Are Individual Differences Germane to the Acceptance of Information Technologies. Decision Sciences, 30(2), pp. 361-391.
[2].Anderson, J. C. & Gerbing, D. W. (1988). Structural Equation Modeling in practice: a Review and Recommended Two-Step Approach, Psychological Bulletin, 3, pp. 103.
[3].Anderson, E.W. (1998). Customer Satisfaction and Word-of-Mouth, Journal of Service Research, 1(1), pp. 1-14.
[4].Andreassen, T. W. & B. Lindestad. (1998). customer loyalty and complex services, International Journal of Service Industry Management, 9(1), pp.7-23.
[5].Arndt, J. (1967). Role of Product-Relates Conversations in the Diffusion of a New Product, Journal of Marketing Research, 4, pp. 291-295.
[6].Bagozzi, R. & Y. Yi. (1988). On the Evaluation of Structural Equation Models, Journal of the Academy of Marketing Science, 16, pp. 74-94.
[7].Bentler, P. M. & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, pp. 588-606.
[8].Bentler, P. M. (1990). Comparative fit index in structural models. Psychological Bulletin, 107, pp. 238-246.
[9].Bone, P. F. (1995). Word-of-mouth Effects on Short-term and Long-term Product Judgements, Journal of Business Research 32, pp. 213-223.
[10].Buttle, F.A. (1997). I heard it through the grapevine: issues in referral marketing. Proceedings of the 5th international colloquium in relationship marketing. Cranfield School of Management. Cranfield University, England.
[11].Carmines, E. G., & McIver, J. (1981). Analyzing models with unobserved variables: Analysis of covariance structures. In G. Bohmstedt & E. Borgatta, Social measurement: Current issues. Beverly Hills, CA.
[12].Chen, H., Wigand, R., Nilan, M. S. (1999). Optimal experience of web activities. Computers in Human Behavior, 15 (5), pp. 585-608.
[13].Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety, Jossey-Bass, San Francisco, CA.
[14].Csikszentmihalyi, M. (1990). Flow, the Psychology of Optimal Experience, Harper & Row, New York.
[15].Dabholkar, P. A. & Bagozzi, R.P. (2002). An Attitudinal Model of Technology-Based Self-Service: Moderating Effects of Consumer Traits and Situational Factors. Journal of the Academy of Marketing Science, 30(3), pp.184-201.
[16].Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, MIS Quarterly, 13(3), pp.319-339.
[17].Feick, L. F. & Price, L. L. (1987). The market maven: a diffuser of marketplace information. Journal of Marketing, 51, pp. 83-97.
[18].Fornell & Larcker. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error, Journal of Marketing Research, 18, pp. 39-50.
[19].Gelb, B. & Johnson, M. (1995).Word-of-mouth communication: causes and consequences. Journal of Health Care Marketing, 15, pp. 54-58.
[20].Gelb, B. D. & Sundaram, S. (2002).Adapting to word of mouse, Business Horizon, 45(4), pp. 21-25.
[21].Hanson, W. A. (2000). Principles of Internet Marketing, Ohio: South-Western College Publishing.
[22].Harrison, T. M., Yin, A., Grove, M., Lovera, O. M., Ryerson, F. J. & Zhou, X. (2000). The Zedong Window: a record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research, 105, pp. 19211-19230.
[23].Hennig-Thurau, T. K. P. & Gremler, D. D. (2002).Understanding Relationship Marketing Outcomes-An Integration of Relational Benefits and Relationship Quality, Journal of Service Research, 4(3), pp. 230-247.
[24].Hennig-Thurau, T. K. P. Gwinner, G. Walsh & Gremler, D. D. (2004). Electronic Word-of-Mouth via Consumer-Opinion Platforms. What Motivates Consumers to Articulate Themselves on the Internet, Journal of Interactive Marketing, 18(1), pp. 38-52 .
[25].Herr, P. M., Kardes , F. R. & Kim, L. (1991). Effects of word-of-mouth and product-attribute information on persuasion. An accessibility-diagnosticity perspective, Journal of Consumer Research, 17(4), pp.454-462.
[26].Higie, R. A., Feick, L. F. & Price, L. L. (1987). Types and amount of word-of mouth communication about retailers. Journal of Retailing, 63, pp. 260-278.
[27].Hoffman, D. L.& T. P. Novak. (1996) Marketing in Hypermedia computer-mediated Environments: Conceptual Foundations, Journal of Marketing, 60, pp. 50-68.
[28].Hsu, C. L & Lu, H. P. (2003). Why do people play on-line games? An extended TAM with social influences and flow experience, Information & Management, 41, pp.853-868.
[29].Hu, P. J., Chau, P. Y. K., Sheng, O. R. L. & Tam, K. Y. (1999). Examining the Technology Acceptance Model Using Physician Acceptance of Telemedicine Technology, Journal of Management Information Systems, 16(2), pp.91-112.
[30].Igbaria, M., Guimaraes, T. & Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model, Journal and management Information Systems, 11(4), pp. 87-114.
[31].Kang ,Y. S., Hong, S., Lee , H. (2009). Exploring continued online service usage behavior: The roles of self-image congruity and regret Computers in Human Behavior, 25, pp.111-122.
[32].Kleijnen, M. H. P., Ruyter , J.C. & Wetzels ,M.G.M. (2004). Consumer Adoption of Wireless Services: Discovering the Rules, While Playing the Game, Journal of Interactive Marketing, 18(2), pp. 51-61.
[33].Kline, R. B. (1998). Principles and Practice of Structural Equation Modeling, New York. The Guilford Press.
[34].Kline, R. B. (2005). Principles and Practice of Structural Equation Modeling, New York, Guilford Press.
[35].Koh, J. & Kim, Y. G. (2004). Sense of Virtual Community: A Conceptual Framework and Empirical Validation, International Journal of Electronic Commerce, 8(2), pp. 75-93.
[36].Liao, C., Chen, J. L., Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service, An integrated model, Computers in Human Behavior, 23, pp. 2804-2822.
[37].Lin, C. H., Sher, P. J., Shih, H.Y. (2005). Past progress and future directions in conceptualizing customer perceived value, International Journal of Service.
[38].Meuter, M. L., Ostrom, A. L., Roundtree, R. I. & Bitner, M.J. (2000). Self-service technologies: understanding customer satisfaction with technology-based service encounters, Journal of Marketing, 64(3), pp. 50-64.
[39].Meuter, M. L., Ostrom, A. L., Bitner, M. J. & Roundtree R. (2003).The influence of technology anxiety on consumer use and experiences with self-service technologies, Journal of Business Research, 56, pp. 899-906.
[40].Meuter, M. L., Bitner, M. J., Ostrom, A. L. & Brown, S.W. (2005). Choosing among alternative service delivery modes: an investigation of customer trial of self-service technologies. Journal of Marketing, 69(2), pp. 61-83.
[41].Nguyen, N. & G. Leblanc. (2001). Corporate image and corporate reputation in customers' retention decisions in services, Journal of Retailing and Consumer Services, 8, pp. 227-236.
[42].Nunnally, J. C. (2005). Psychometric theory, 2, New York, McGraw Hill.
[43].Oliver, R. L. (1977). Effect of expectation and disconfirmation on post-exposure product evaluations-an alternative interpretation. Journal of Applied Psychology, 62(4), pp. 480.
[44].Pandya, S. (1991). Exploring the Effect of Consumers’ Dissatisfaction Level on Complaint Behaviors, European Journal of Marketing, 25(90), pp. 7-21.
[45].Parasuraman, A. (2000). Technology Readiness Index (TRI): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research, 2(4), pp. 307-321.
[46].Parasuraman, A. & Colby, C. L. (2001). Techno-Ready Marketing: How and Why Your Customers Adopt Technology. New York: Free Press.
[47].Rettie, R. (2001). An exploration of flow during Internet use, Internet Research: Electronic Networking Application and Policy, 11(2), pp. 103-113.
[48].Rieber, L. P. (1996). Seriously considering play: Designing interactive learning environments based on the blending of micro-worlds, simulations, and games. Educational Technology Research & Development, 44(2), pp. 43-58.
[49].Singh, J. (1990). Atypology of Consumer Dissatisfaction Responses Style, Journal of Retailing, 66, pp.57-99.
[50].Severin, W. J. & Tankard, J. W. (1988). Communication Theories: Origins, Methods. White Plains, NY, Longman Inc.
[51].Sternberg, R. J. & Lubart, T. I. (1999). The Concept of Creativity: Prospects and Paradigms. Handbook of Creativity.
[52].Taylor, S., Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions, International Journal of Research in Marketing.
[53].Teo, T. S. H., Lim, V. K. G., & Lai, R. Y. C. (1999). Intrinsic and extrinsic motivation in Internet usage. Omega, 27(1), pp. 25-37.
[54].Trevino, L. K. & Webster, J. (1992). Flow in Computer-Mediated Communication: Electronic Mail and Voice Mail Evaluation and Impacts, Communication Research, 19(5), pp. 539-573.
[55].Tsikriktsis, N. (2004). A Technology Readiness-based Taxonomy of Customers, Journal of Service Research, 7(1), pp. 42-52.
[56].Venkatesh, V. & Davis, F. D. (1996). A Model of the Antecedents of Perceived Ease of Use: Development and test. Decision Sci, 27(3), pp. 451-481.
[57].Venkatesh, V. & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, Management Science, 45(2), pp. 186-204.
[58].Venkatesh, V., Morris, M.G. & Ackerman, P. L. (2000). A Longitudinal Field Investigation of Gender Differences in Individual Technology Adoption Decision Making Processes, Organizational Behavior and Human Decision Processes, 83(1), pp. 33-60.
[59].Venkatesh, V. Morris, M.G., Davis, G. B. & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View, MIS Quarterly, 27(3), pp. 425-478.
[60].Van der Hijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), pp. 695-704.
[61].Walczuch, R., Lemmink, J., Streukens, S. (2007). The empirical study of customer satisfaction and continued behavioral intention towards self-service banking: technology readiness as an antecedent- Information & management.
[62].Webster, J., Trevino, L., Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions, Computers in Human Behavior, 9(4), pp.411-426.
[63].Wixom, B. H. & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), pp. 85-102.
[64].Yen, H. R. (2005). An Attribute-based Model of Quality Satisfaction for Internet Self-Service Technology, The Service Industries Journal, 25(5), pp 641-659.
[65].Ying, H. L. & Chung, C. M. Y. (2007). The Effects of Single-Message Single-Source Mixed Word-of-Mouth on Product Attitude and Purchase Intention. Asia Pacific Journal of Marketing and Logistics, 19(1), pp. 75-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top